NOTE ON HANKEL TRANSFORM

By W.Y. Lee

Titchmarsh first defined the Hankel transform \mathfrak{S}_{μ} for $\mu \geq-\frac{1}{2}$ by

$$
\begin{equation*}
\Phi(y)=\left(\mathfrak{S}_{\mu} \varphi(x)\right)(y)=\int_{0}^{\infty} \varphi(x) \sqrt{x y} J_{\mu}(x y) d x \tag{1}
\end{equation*}
$$

where $J_{\mu}(x)$ is the Bessel function of the first kind and proved the following inversion formula ([7: pp. 240-242]):

THEOREM 1. If $\varphi \in L^{1}(0, \infty)$ is of bounded variation in a neighborhood of the point x, then for $\mu \geq-\frac{1}{2}$

$$
\begin{equation*}
\frac{1}{2}\{\varphi(x+0)+\varphi(x-0)\}=\left(\mathfrak{S}_{\mu}^{-1} \Phi(y)\right)(x)=\int_{0}^{\infty} \Phi(y) \sqrt{x y} J_{\mu}(x y) d y \tag{2}
\end{equation*}
$$

It was extended to distributions by Zemanian as follows ([10-12]). Let H_{μ} be the space of smooth functions defined on $(0, \infty)$ satisfying the inequalities

$$
\gamma_{p, q}^{\mu}(\varphi)=\sup _{0<x<\infty}\left|x^{p}\left(x^{-1} D\right)^{q}\left(x^{-\mu-1 / 2} \varphi(x)\right)\right|<\infty, p, q=0,1,2, \cdots \ldots
$$

equipped with the topology generated by the seminorms $\left\{\gamma_{p, q}^{\mu}\right\}_{p, q=0^{\circ}}^{\infty}$. Then the Hankel transform \mathfrak{S}_{μ} defined by (1) is an automorphism on H_{μ}. If the generalized Hankel transform $\mathfrak{S}_{\mu}{ }^{\prime}$ is defined by

$$
\begin{equation*}
\left\langle\mathfrak{S}_{\mu}{ }^{\prime} f, \varphi\right\rangle=\left\langle f, \mathfrak{S}_{\mu} \varphi\right\rangle \tag{3}
\end{equation*}
$$

where f belongs to the dual space $H_{\mu}{ }^{\prime}$ and $\varphi \in H_{\mu}$, then $\mathfrak{G}_{\mu}{ }^{\prime}$ is an automorphism on the dual space $H_{\mu}{ }^{\prime}$. Define the operator $N_{\mu}=x^{\mu+1 / 2} D_{x} x^{-(\mu+1 / 2)}$ with the in. verse N_{μ}^{-1} given by

$$
N_{\mu}^{-1} \varphi(x)=x^{\mu+1 / 2} \int_{\infty}^{x} y^{-(\mu+1 / 2)} \varphi(y) d y
$$

Let m be a positive integer greater than $-\mu-1 / 2$ for any given real number μ. Then the Hankel transform of arbitrary order $\mathfrak{S}_{\mu, m}$ is defined by

$$
\begin{equation*}
\Phi(y)=\left(\mathfrak{S}_{\mu, m} \varphi(x)\right)(y)=(-1) \stackrel{m}{y}_{y-⿹_{S}}^{\mu+m} N_{\mu+m-} 1 \ldots N_{\mu} \varphi(x) \tag{4}
\end{equation*}
$$

with its inverse Hankel transform $\mathfrak{S}_{\mu, m}^{-1}$ given by

$$
\varphi(x)=\left(\mathfrak{S}_{\mu, m}^{-1} \Phi(y)\right)(x)=(-1)^{m} N_{\mu}^{-1} \cdots N_{\mu+m-1}^{-1} \mathfrak{H}_{\mu+m} y^{m} \Phi(y)
$$

Replacing \mathfrak{S}_{μ} in the right hand side of (3) by $\mathfrak{S}_{\mu, m}$ we ob: [11: pp.764765])

THEOREM 2. For any real number μ, the Hankel transform $\mathfrak{S}_{\mu, m}$ defined by (4) is an automorphism on H_{μ}, and hence the generalized Hankel transform \mathfrak{S}_{μ}, defined by (3) is an automorphism on the dual space $H_{\mu}{ }^{\prime}$.

Motivated by Hirschman, Jr and Haimo's work on variation diminishing Hankel transforms ([2], [3]), Schwartz later on defined his Hankel transform \mathscr{H}_{μ} for $\mu \geq-\frac{1}{2}$ by ($[6: p .713]$)

$$
\begin{equation*}
\Psi(y)=\left(\mathscr{H}_{\mu} \phi(x)\right)(y)=\int_{0}^{\infty} \phi(x) \mathscr{J}_{\mu}(x y) d m(x) \tag{5}
\end{equation*}
$$

where $d m(x)=\left[2^{\mu} \Gamma(\mu+1)\right]^{-1} x^{2 \mu+1} d x$ and $\mathscr{J}_{\mu}(x)=2^{\mu} \Gamma(\mu+1) x^{-\mu} J_{\mu}(x)$. Let $L(0, \infty)$ be the space of $L^{1}(0, \infty)$-integrable functions with respect to the Radon measure $d m(x)$. He then proved the following inversion formula ($6:$ pp. 713-715]):

THEOREM 3. Let ϕ belong to $L(0, \infty)$ and let

$$
\int_{0}^{1} \phi(x) x^{\mu+1 / 2} d x<\infty
$$

If ϕ is of bounded variation in a neighborhood of the point x, then

$$
\begin{equation*}
\frac{1}{2}\{\phi(x+0)+\phi(x-0)\}=\left(\mathscr{H}_{\mu}^{-1} \Psi(y)\right)(x)=\int_{0}^{\infty} \Psi(y) \mathscr{J}_{\mu}(x y) d m(y) \tag{6}
\end{equation*}
$$

In [5:p. 432] we raised the question on relations between the two Hankel transforms (1), (5) and their respective inversion formulas (2), (6). In this paper we prove that they are essentially the same. A straightforward computation reveals that (5) and (6) are reduced respectively to

$$
\begin{gather*}
\Psi(y)=\left(\mathscr{H}_{\mu} \phi(x)\right)(y)=\int_{0}^{\infty} \phi(x) \sqrt{x y}(x / y)^{\mu+1 / 2} J_{\mu}(x y) d y \tag{7}\\
\frac{1}{2}\{\phi(x-0)+\phi(x+0)\}=\left(\mathscr{H}_{\mu}^{-1} \Psi(y)\right)(x)=\int_{0}^{\infty} \Psi(y) \sqrt{x y}(y / x)^{\mu+1 / 2} J_{\mu}(x y) d y \tag{8}
\end{gather*}
$$

To give a refined form of Theorem 3, we need the following definition.

DEFINITION. For any real number $p \geq 0$, the space $E_{p}(\Omega)$ consists of L^{1}-integrable functions defined on an open subset $\Omega \subset(0, \infty)$ with respect to the Radon measure $x^{p} d x$ where $d x$ is the Lebesgue measure.
From the definition we have $E_{0}(\Omega)=L^{1}(\Omega), E_{2 \mu+1}(\Omega)=L(\Omega)$ and in particular $x^{-(\mu+1 / 2)} \cdot E_{\mu+1 / 2}(0, \infty)=L^{1}(0, \infty)$. We shall call a function φ in $L^{1}(0, \infty)$ an $E_{\mu+1 / 2}$-bounded variation if $x^{\mu+1 / 2} \varphi$ is of bounded variation in $L^{1}(0, \infty)$. Then Theorem 3 is refined as follows:

THEOREM 3'. Let $\phi \in E_{\mu+1 / 2}(0, \infty)$ be an $E_{\mu+1 / 2}$-bounded variation in a neighborhood of the point x, then (7) and (8) are inverse to each other under the Hankel transform (5).

Now we prove the main thoerem. Hereafter μ is any real number $\geq-\frac{1}{2}$.
THEOREM 4. (a) Theorem 1 implies Theorem 3^{\prime} under the mapping $\varphi \rightarrow$ $(x / y)^{-(\mu+1 / 2)} \varphi$. In other words

$$
\begin{equation*}
\left(\mathfrak{S}_{\mu} \varphi(x)\right)(y)=\left(\mathscr{H}_{\mu}(x / y)^{-(\mu+1 / 2)} \varphi(x)\right)(y) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathfrak{S}_{\mu}^{-1} \Phi(y)\right)(x)=\left(\mathscr{H}_{\mu}^{-1}(y / x)^{-(\mu+1 / 2)} \Phi(y)\right)(x) \tag{10}
\end{equation*}
$$

(b) Theorem 3' implies Theorem 1 under the mapping $\phi \rightarrow(x / y)^{\mu+1 / 2} \phi$. In other words,

$$
\left(\mathcal{H}_{\mu} \phi(x)\right)(y)=\mathfrak{F}_{\mu}\left((x / y)^{\mu+1 / 2} \phi(x)\right)(y)
$$

and

$$
\left(\mathscr{H}_{\mu}^{-1} \Psi(y)\right)(x)=\mathfrak{S}_{\mu}\left((y / x)^{\mu+1 / 2} \Psi(y)\right)(x)
$$

PROOF. Since the proof of (a) and (b) are identical we prove (a) only. Let φ satisfy the assumptions of Theorem 1 and consider the mapping $\varphi \rightarrow(x / y)^{-(\mu+1 / 2)} \varphi$. Since

$$
\|\varphi\|_{L^{1}}=y^{-(\mu+1 / 2)}\left\|(x / y)^{-(\mu+1 / 2)} \varphi\right\|_{E_{\mu+1 / 2}}
$$

this mapping is injective from $L^{1}(0, \infty)$ into $E_{\mu+1 / 2}(0, \infty)$. Moreover φ is of bounded variation in $L^{1}(0, \infty)$ if and only if $(x / y)^{-(\mu+1 / 2)} \varphi$ is of $E_{\mu+1 / 2}$-bounded variation in $E_{\mu+1 / 2}(0, \infty)$. Thus $(x / y)^{-(\mu+1 / 2)} \varphi$ satisfies the assumptions of Theorem 3^{\prime}. This completes the proof.

Since the mapping $\varphi \rightarrow(x / y)^{-(\mu+1 / 2)} \varphi$ is an isomorphism from H_{μ} onto $x^{\mu+1 / 2} H_{\mu}$, an application of \mathfrak{S}_{μ} and $\mathfrak{S}_{\mu}{ }^{\prime}$ on the space H_{μ} and on its dual space $H_{\mu}{ }^{\prime}$ respectively allows us to extend Theorem 4 to distributions. Thus we have
THEOREM 5. (a) For $\mu \geq-\frac{1}{2}$, the two Hankel transforms \mathfrak{S}_{μ} and \mathscr{H}_{μ} are equivalent on the spaces H_{μ} and $x^{\mu+1 / 2} H_{\mu}$ respectively, that is for all $\varphi \in H_{\mu}$

$$
\left(\mathfrak{S}_{\mu} \varphi(x)\right)(y)=\mathscr{H}_{\mu}\left((x / y)^{-(\mu+1 / 2)} \varphi(x)\right)(y)
$$

(b) For $\mu \geq-\frac{1}{2}$, the two generalized Hankel transforms 5_{μ} and $\mathscr{H}_{\mu}^{\prime}$ are equivalent on the dual spaces $H_{\mu}{ }^{\prime}$ and $\left(x^{\mu+1 / 2} H_{\mu}\right)^{\prime}$ respectively in a sense of (3), namely for each $f \in H_{\mu}{ }^{\prime}$ and for all $\varphi \in H_{\mu}$

$$
\left\langle\mathcal{S}_{\mu}^{\prime} f, \varphi\right\rangle=\left\langle\mathscr{H}_{\mu}^{\prime}(x / y)^{-(\mu+1 / 2)} f, \varphi\right\rangle
$$

Theorem 5 answers our previous questions ($[5: \mathrm{pp} .431-432]$).

Rutgers University, Camden Campus
Camden, New Jersey 08102

REFERENCES

[1]L. D. Dube and J. N. Pandey, On the Hankel Transform of Distributions, to appear.
[2] D. T. Haimo, Integral Equations Associated with Hankel Convolutions, Trans. A. M. S. 116, pp. 330-375, 1965.
[3] I. I. Hirschman, Jr., Variation Diminishing Hankel Transforms, J. Analyse Math. 8, pp. 307-336, 1960-1961.
[4] W. Y. Lee, On Spaces of Type H_{μ} and Their Hankel Transformations, SIAM J. Math. Anal. 5, pp. 336-348, 1974.
[5] W. Y. Lee, On Schwartz's Hankel Transformation of certain Spaces of Distributions, Math. Anal. 6, pp. 427-432, 1975.
[6] A. L. Schwartz, An Inversion Theorem for Hankel Transforms, Proc. A. M. S. 22, pp. 713-717, 1969.
[7] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, 1937.
[8] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.
[9] G. N. Watson, A Treatise on the Theory of Eessel Functions, Cambridge Univ. Press, 1966.
[10] A.H. Zemanian, A Distributional Hankel Transformation, J. SIAM Appl. Math. 14, pp. 561-576, 1966.
[11] A. H. Zemanian, Hankel Transforms of Arbitrary Order, Duke Math. J. 34, pp. 761-769, 1967.
[12] A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, 1968.
[13] A. H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill, 1965.

