Kyungpook Math. J. Volume 17, Number 1 June, 1977

ON A CONJECTURE OF SAEKS ON MINIMUM EXTENSION RESOLUTION SPACE

By W. Y. Lee

Let H be a Hilbert space, and let E^t be a resolution of identity where t ranges over a LCA topological group G. Following [1]-[4], a family of shift operators is defined as a class of unitary operators such that

 $U^{t}(B^{A}) \subset B^{A+t}$

for all $t \in G$ and for all Borel subsets A where B^A is the range of $E^A = \int_A dE(\lambda)$, and a group of shift operators as a class of shift operators such that $U^{t-s} = [U^t] [U^s]^{-1}$

for all t and s in G. The resolution space (H, E^t, G) is called a uniform resolution space if it admits a group of shift operators. Let μ be a σ -finite positive Borel measure on G. Then Saeks proved ([1:p.324]) that (H, E^t, G) admits a group of shift operators if and only if μ is equivalent to a Haar measure m on G. From now on we shall exclusively deal with uniform resolution space. Now let M be a class of positive finite Borel measures on G and let u be a spectral multiplicity function defined on M. The following theorem was proved

by Saeks ([1:pp. 324-328]).

THEOREM 1. Every uniform resolution space (H, E^t , G) is equivalent to $L_2(m, H)^c$ where m is a Haar measure on G and c is a cardinal number.

In fact if $\{\mu^k\}$ is a canonical representation for the spectral multiplicity function u ([7: pp. 76-87, 106-108]), $\{\mu^k\}$ actually consists of a single Borel measure and so $c=u(\mu^k)$. It follows that if $(\underline{H}, \underline{E}^t, G)$ is a minimal extension uniform resolution space in a sense that \underline{H} is spanned by the family of elements $\{U^n x(t):$ $x(t) \in H, t \in G, n \in Z\}$ where U is a unitary extension of a contraction T on H ([10]-[11]), then

$$(H, E^{t}, G) \cong L_{2}(m, H)^{c_{1}}$$

$$(\underline{H}, \underline{E}^{t}, G) \cong L_{2}(\underline{m}, \underline{H})^{c_{2}}$$

$$(2)$$

where m, <u>m</u> are Haar measures on G and c_1 , c_2 are cardinal numbers. In [1:

18 W. Y. Lee p. 334] Saeks conjectured that $c_1 \ge c_2$. However the inequality turned out to be equality, namely

THEOREM 2. Let (H, E^{t}, G) be a uniform resolution space and let $(\underline{H}, \underline{E}^{t}, G)$ be its minimal extension uniform resolution space. Then

 $c_1 = c_2$

where c_1 and c_2 are given by the equations (1) and (2) respectively.

PROOF. Let u be a spectral multiplicity function on a class M of positive finite Borel measures and let $\{\mu^k\}$, $\{\underline{\mu}^k\}$ be the canonical representations of u on (H, E^t, G) , $(\underline{H}, \underline{E}^t, G)$ respectively. Since (H, E^t, G) and $(\underline{H}, \underline{E}^t, G)$ are uniform resolution spaces, Theorem 1 implies that $\{\mu^k\}$ ($\{\underline{\mu}^k\}$) consists of a single Borel measure μ^k ($\underline{\mu}^k$) such that μ^k ($\underline{\mu}^k$) is equivalent to the Haar measure m (\underline{m}). Since any two Haar measures m, \underline{m} on a locally compact group G are equivalent ([6: p. 263]), μ^k and $\underline{\mu}^k$ also equivalent whence $u(\mu^k) = u(\underline{\mu}^k)$. Thus the equality $c_1 = c_2$ is an immediate consequence of the equalities $c_1 = u(\mu^k)$, $c_2 = u(\mu^k)$. This completes the proof.

As an example on a finite dimensional space, let $H=R^3$ and let T on R^3 be given by

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

\0 0 0/

Then the unitary extension U on R^4 of T is given by

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Since the eigenvalues of T(U) are $\lambda_1=0$ and $\lambda_2=1$ with multiplicity two $(\underline{\lambda}_1=1)$ with multiplicity 3 and $\lambda_2=-1$) and since spectral multiplicity function on a finite dimensional space is the minimum value of multiplicities of eigenvalues $([7:pp. 84-85]) u(\lambda_1=1, \lambda_2=0)=1, u(\underline{\lambda}_1=1, \underline{\lambda}_2=-1)=1$, and so $c_1=c_2=1$ in this case. Moreover the minimal extension space <u>H</u> is given by

$$\underline{H} = \bigcup_{n \in \mathbb{Z}} \{ U^n h \colon h \in H \} = H \oplus UH = R^3 \oplus R \cong R^4.$$

Theorem 2 and the structure of minimal extension resolution space lead us to

On a Conjecture of Saeks on Minimum Extension Resolution Space 19

THEOREM 3. Let (H, E^{t}, G) and $(\underline{H}, \underline{E}^{t}, G)$ be defined as before. If T is a contraction on (H, E^{t}, G) , U its unitary extension on (H, E^{t}, G) , then $L_2(\underline{m}, \underline{H}) = \bigcup_{x \in \mathbb{Z}} \{ U^n x(t) \colon x(t) \in L_2(m, H), t \in G \}.$

In view of Sz.-Nagy ([10]), Sz.-Nagy and Foias ([11]) H is genera-PROOF. ted by the set $\bigcup_{n \in U} \{U^n x(t) : x(t) \in L_2(m, H), t \in G\}$. Since U is unitary, $\|U^n x\|_H$

n∈Z

 $= \|x\|_{H}$ for every *n* in *Z*. Thus the theorem is a consequence of the following equalities:

$$L_{2}(\underline{m}, \underline{H}) = \bigcup_{n \in \mathbb{Z}} \{ U^{n} x(t) : x(t) \in H, \| U^{n} x \|_{\underline{H}}^{2} = \int_{G} \| U^{n} x(t) \|_{\underline{H}}^{2} dm(t) < \infty \}$$

$$= \bigcup_{n \in \mathbb{Z}} \{ U^{n} x(t) : x(t) \in H, \| x \|_{H}^{2} = \int_{G} \| x(t) \|_{H}^{2} dm(t) < \infty \}$$

$$= \bigcup_{n \in \mathbb{Z}} \{ U^{n} x(t) : x(t) \in L_{2}(m, H), t \in G \}$$

thereby proving the theorem.

Suppose now T is in addition time-invariant (that is, it commutes with unitary operators) on a uniform resolution space (H, E^{t} , G) and suppose (<u>H</u>, \underline{E}^{t} , G) is any uniform resolution space. Saeks showed the following theorem ([1:pp. 329-333]):

THEOREM 4. There is a time-invariant unitary extension U on $(H \oplus H, E^{t} \oplus E^{t}, f)$ G) of T on (H, E^{t}, G) such that

(3)

$$U = \begin{pmatrix} T & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$$

where $U_{12}=0$, U_{21} and U_{22} are causal.

An application of Theorem 4, Sz.-Nagy ([10: pp. 12-26]), Sz.-Nagy and Foias ([11: pp. 16-19]) allows us to extend Theorem 4 to an infinite direct sum of uniform resolution spaces, namely,

THEOREM 5. Let T be a contraction on a uniform resolution space (H, E^{t}, G) and let (H_n, E_n^t, G) be any uniform resolution space for each $n=0, \pm 1, \pm 2, \cdots$ where $H_0 = H$, $E_0^t = E^t$. Then the representation of unitary extension U on $(\sum_{n \in Z} + H_n)$, $\sum_{n \in Z} + E_n^t$, G) of T is given by

(4)

If in addition T is time-invariant, all the components of U except T are causal.

Note that if in particular $H_n = H$ for each $n=0, \pm 1, \pm 2, \cdots$, the representation (4) is reduced to Sz.-Nagy's for $n=0, 1, 2, \cdots$, ([10:pp. 12-26]), Sz.-Nagy and Foias's for $n=0, \pm 1, \pm 2, \cdots$, ([11: pp. 16-19]).

Rutgers University, Camden Campus Camden, New Jersey 08102

REFERENCES

 R. Saeks, Causal Factorization, Shift Operators and the Spectral Multiplicity Function, Vector and Operator-Valued Measures and Its Applications (Tucker, D. H. and H. B. Maynard, editor), pp. 319-335, Academic Press, 1974.
 . On the Existence of Shift Operators, Tech. Memo., EE-707, Univ. of

Notre Dame, 1970.

[3] _____, Causality in Hilbert Space, SIAM Review. 12, pp. 357-383, 1970.
[4] _____, State in Hilbert Space, SIAM Review 15, pp. 283-308, 1973.
[5] _____, On Semi-Uniform Resolution Space, Tech. Memo, EE.-7104, Univ. of Notre Dame, 1971.

[6] P. R. Halmos, Measure Theory, Van Nostrand, 1950.

[7] _____, Introduction to Hilbert Space and the Theory of Spectral Multiplicity Function, Chelsea, 1951.

[8] _____, A Hilbert Space Problem Book, Van Nostrand, 1967.

[9] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, 1955.

[10] B. Sz.-Nagy, Appendix to Functional Analysis, Frederick Ungar, 1960

[11] B. Sz-Nagy and C. Foias, *Harmonic Analysis of Operators on Hilbert Space*, American Elsevier, 1970.

[12] N. Dunford and J. T. Schwartz, Linear Operators, Part II: Spectral Theory, Interscience, 1963.