A STUDY ON TOPOLOGICAL MULTI-SEMIGROUPS

By Younki Chae

The Study of discrete set-valued multiplications on a set is originated and deve loped by O. Ore. On the other hand, the topological observations of set-valued functions have been investigated extensively over the past forty years. The author developed a basic theory of set-valued topological algebra [1] combining the above two algebraic and topological concepts together.
This paper is devoted to the investigation of multi-semigroup multiplications on an interval. It is shown that a multi-semilattice on an interval in which an end point is a zero has the exact structure of a topological semilattice. Also some other properties of multi-semigroups are studied in terms of usual standard threads.
The author wishes to express his sincere gratitude to Professor Alexander D. Wallace for his continued guidance and suggestions.

1. Introduction

Let X be a space and let 2^{X} be the set of all non-void closed subsets of X. With each subset A of X we associate the following subsets of 2^{X} :

$$
L(A)=\left\{B \in 2^{X} \mid B \subset A\right\}, M(A)=\left\{B \in 2^{X} \mid B \cap A \neq \square\right\} .
$$

Throughout this paper, all spaces in consideration are assumed to be Hausdorff and 2^{X} is assumed to have the Vietoris topology having the family

$$
\left\{L(U) \mid U=U^{\circ} \subset X\right\} \cup\left\{M(V) \mid V=V^{\circ} \subset X\right\}
$$

as a subbase of it [2].
DEFINITION 1.1. A multi-semigroup is a nonvoid Hausdorff space S together with a continuous function

$$
S \times S \longrightarrow 2^{S}
$$

(whose value at (x, y) will be denoted by $x y$) satisfying

$$
(x y) z=x(y z)
$$

for all x, y, z in S. Here, $A B$ is defined to denote the union $\cup\{a b \mid a \in A, b \in B\}$ for $A, B \subset S$.

The proof of the following lemma may be found in [1].

[^0]LEMMA 1.2. Let A and B be compact subsets of the multi-semigroup S. If $A B$ is contained in an open subset W of S, then there exist open subsots U and V of S such that

$$
A \subset U, B \subset V, \text { and } U V \subset W
$$

By using the above lemma, one may obtain
LEMMA 1.3. Let S be a multi-semigroup. If A is compact and if B is open in S, then the set

$$
\{x \in S \mid A x \subset B\}
$$

is open in S.
The following theorem, for a semigroup, is due to A.D. Wallace and J. M. Day and appears in [7]. By the aid of lemma 1.3, the same theorem holds for a multi-semigroup.

THEOREM 1.4. Suppose S is a continuum multi-semigroup. If H is a subset of S with nonempty boundary $F(H)$ and if H^{*} contains a point t such that $S t \subset H^{*}$, then $S b \subset H^{*}$ for some b in $F(H)$.

DEFINITION 1.5. Let S be a multi-semigroup.
(1) An element s of S is called a left scalar if and only if $s x$ is a singleton for each x in S.
(2) An element u of S is called a left unit(left scalar unit) if and only. $x \in u x \quad(x=u x)$ for each x in S.
(3) An element e of S is called an idempotent(multi-idempotent) if and only if $e^{2}=e\left(e \in e^{2}\right)$.
(4) An element f of S is called a left scalar idempotent if and only if f is a left scalar and an idempotent.
In ench definition above, right and two-sided elements are defined analogously.
CONVENTIONS Throughout, $I=[a, b]$ will denote the real closed interval from a to b and a semigroup will always mean a topological semigroup([6], [7]).

DEFINTION 1.6. A subset A of a multi-semigroup S is called a left (right, twosided) ideal of S if and only if

$$
S A \subset A(A S \subset A, S A \cup A S \subset A)
$$

As an immediate application to theorem 1.4, we have
COROLLARY 1.7. Suppose I is a multi-semigroup in which a is a zero. Then (1) $[a, x]$ is an ideal of I for each x in I.
(2) If I has a unit, then $I x=[a, x]=x I$ for each x in I.
(3) If e is a multi-idempotent of I, then

$$
I e=[a, e]=e I
$$

LEMMA 1.8. If $f, g: 2^{I} \longrightarrow I$ are functions defined by

$$
f(A)=\inf A, \quad g(A)=\sup A
$$

then f and g are continuous.
PROOF. Let $A \in 2^{I}$ and let $U=(c, d)$, the open interval from c to d such that $f(A)=x \in U$. Let $V=(c, b]$. Then $A \in L(V) \cap M(U)$. If $B \in L(V) \cap M(U)$, then $B \subset$ V and $B \cap U \neq \square$. Therefore $c<f(B)<d$, i. e., $f(B) \in U$. Hence f is continuous. Similarly, g is continuous.

2. Standard multi-semigroups

DEFINITION 2.1. A multi-semigroup on I will be called a standard multisemigroup if and only if a is a zero and b is a scalar unit. For the definition of a standard thread in the theory of semigroups, see [4] and [5].

LEMMA 2.2. Suppose I is a multi-semigroup in which a is a zero. If e is an idempotent of I, then $[a, e]$ is a standard multi-semigroup. In particular, I is a standard multi-semigroup if b is an idempotent.

PROOF For each x in $[a, e]$, define $x^{\prime}=\inf (e x)$. In view of (1) in Corollary 1.7, $\left(x^{\prime}\right)^{\prime} \leq x^{\prime} \leq x$ for each x in $[a, \varepsilon]$. Note that $x^{\prime} \in e x$ for each x in $[a, e]$ since $e x$ is closed. Now since $e x=e(e x)=\bigcup\{e y \mid y \in e x\}, e y \subset e x$ for each $y \cong e x$. It follows that $e x^{\prime} \subset e x$, and

$$
\left(x^{\prime}\right)^{\prime}=\inf \left(e x^{\prime}\right) \geq \inf (e x)=x^{\prime} \geq\left(x^{\prime}\right)^{\prime}
$$

i. e., $\left(x^{\prime}\right)^{\prime}=x^{\prime}$. Define a function $f:[a, e] \longrightarrow[a, e]$, via $f(x)=x^{\prime}$. Then f is continuous by Lemma 1.8. Morover,

$$
f^{2}(x)=f(f(x))=f\left(x^{\prime}\right)=\left(x^{\prime}\right)^{\prime}=x^{\prime}=f(x)
$$

i. e. , $f^{2}=f$ and f is a retraction. Since $f(a)=a^{\prime}=a$ and $f(e)=e^{\prime}=e, f$ is a surjection. Hence $f(x)=x$, i. e., $e x=x$ for each x in $[a, e]$. Similarly, $x e=x$ for each x in $[a, e]$ so that e is a scalar unit for $[a, e]$. By (1) in Corollary 1.7, $[a, e]$ is a standard multi-semigroup.

CONVENTION For a multi-semigroup on I, the following notation will be adopted throughout the remainder of this paper. For each x and each y in I, denote

$$
x \wedge y=\inf (x y), \quad x \vee y=\sup (x y)
$$

LEMMA 2.3. Let I be a standard multi-semigroup and let $x, y, u, v \in I$ with $x \leq y$
and $u \leq v$. Then

$$
x \vee u \leq y \vee v
$$

PROOF. Since $x \leq y, x \in[a, y]=I y$. Then

$$
x u \subset(I y) u=I(y u)=\bigcup\{I t \mid t \in y u\}=\bigcup[a, t] \mid t \in y u\}=\left[\begin{array}{ll}
a, & y \vee u
\end{array}\right] .
$$

It follows that $x \vee u \leq y \vee u$. In a similar way, $y \vee u \leq y \vee v$ may be established. Therefore $x \vee u \leq y \vee u \leq y \vee v$.

THEOREM. 2.4. If I is a standard multi-semigroup, then (I, \vee) is a standard thread.

PROOF. Let $x, y, z \in I$. Since $x \vee y \in x y,(x \vee y) z \subset(x y) z=x y z$, i. e., $(x \vee y) \vee z \leq \sup (x y z)=\sup (\cup\{t z \mid t \in x y\})=\sup \{t \vee z \mid t \in x y\}$.
Since $t \leq x \vee y$ for every $t \in x y$, by Lemma 2.3, $t \vee z \leq(x \vee y) \vee z$ for all t in $x y$. It follows that

$$
(x \vee y) \vee z \leq \sup (x y z)=\sup \{t \vee z \mid t \in x y\} \leq(x \vee y) \vee z
$$

and $(x \vee y) \vee z=\sup (x y z)$. Similarly, $x \vee(y \vee z)=\sup (x y z)$, i.e.,

$$
(x \vee y) \vee z=\sup (x y z)=x \vee(y \vee z) .
$$

LEMMA 2.5. Let I be a standard multi-semigroup such that $x \wedge z \neq y \wedge z$ for all $x, y, z \in I$ with $x<y$ and $z \neq a$. Then $x \leq y$ implies $x \wedge z \leq y \wedge z$ for all $z \in I$.

Proof. Let $u<v$ in I and let

$$
A=\{z \in(a, b] \mid u \wedge z<v \wedge z\} .
$$

Then $A \neq \square$ since $b \in A$. If $z_{0} \in A$, then $u \wedge z_{0}<v \wedge z_{0}$. Pick a point t so that $u \wedge z_{0}<t<v \wedge z_{0}$. By the continuity of the operation \wedge, there is an open set W about z_{0} such that $\{u \wedge w \mid w \in W\} \subset[a, t)$ and $\{v \wedge w \mid w \in W\} \subset(t, b]$, i.e., $W \subset A$. Therefore A is an open subset of ($a, b]$. By hypothesis, $(a, b]-A=\{z \in(a, b\} \mid u \wedge$ $z>v \wedge z\}$. In a similar way, it can be also shown that ($a, b]-A$ is open. Then A is a proper clopen subset of ($a, b]$ if $(a, b]-A$ is nonvoid. Therefore $A=(a, b]$.

THEOREM 2.6. Suppose I is a standard multi-semigroup such that $x \wedge z \neq y \wedge z$ for all $x, y z \in I$ with $x<y$ and $z \neq a$. Then (I, \wedge) is a standard thread.

PROOF. Let $x, y, z \in I$. Since $x \wedge y \in x y,(x \wedge y) z \subset(x y) z=x y z$. Hence

$$
(x \wedge y) \wedge z \geq \inf (x y z)=\inf (\cup\{t z \mid t \in x y\})=\inf \{t \wedge z \mid t \in x y\} .
$$

Since $t \geq x \wedge y$ for every $t \in x y$, by Lemma 2.5, $t \wedge z \geq(x \wedge y) \wedge z$ for all t in $x y$. It follows that

$$
(x \wedge y) \wedge z \geq \inf (x y z)=\inf \{t \wedge z \mid t \in x y\} \geq(x \wedge y) \wedge z
$$

i. e., $(x \wedge y) \wedge z=\inf (x y z)$. Similarly, $x \wedge(y, \wedge z)=\inf (x y z)$.

THEOREM 2.7. Suppose ($I, *$) and ($I, *^{\prime}$) are standard threads such that $x * y$ $\leq x *^{\prime} y$ for each $x, y \in I$. Then I is a standard multi-semigroup under the multipltiplication(denoted by juxtaposition)

$$
x y=\left[x * y, x *^{\prime} y\right]
$$

PROOF Clearly the multiplication is continuous. To show the associative law, let x, y, z be in I. Then $t_{1} * z \leq t_{2} * z$ and $t_{1} *^{\prime} z \leq t_{2} *^{\prime} z$ whenever $t_{1} \leq t_{2}$. If $t \in x y$ then $x * y \leq t \leq x *^{\prime} y$ so that $(x * y) * z \leq t * z$ and $t *^{\prime} z \leq\left(x *^{\prime} y\right) *^{\prime} z$. Since $t z$ is connected for all t in $x y,(x y) z$ is connected [2]. It follows that

$$
(x y) z=\left[(x * y) * z, \quad\left(x *^{\prime} y\right) *^{\prime} z\right]=\left[x *(y * z), x *^{\prime}\left(y *^{\prime} z\right)\right]=x(y z),
$$

i. e., $(x y) z=x(y z)$. Clearly, $a x=a=x a$ and $b x=x=x b$.

3. Multi-semilattices

DEFINITION 3.1. A multi-semigroup S is said to be a multi-band if and only if every element is an idempotent.
A multi-semilattice is a commutative multi-band.
THEOREM 3.2. If I is a multi-band in which a is a zero, then $x y=\min \{x, y\}$, i.e., each such multi-band is a topological semilattice.

Proof. Since every element is an idempotent, by Lemma 2.2, it is readily shown that $x y=x=y x$ whenever $x \leq y$, i. e., $x y=\min \{x, y\}$.

LEMMA 3.3. Suppose I is a multi-band. If $v \in u v(u \in u v)$ for all u and v in I with $u<v$, then

$$
u v \cap(v, b]=\square(u v \cap[a, u)=\square)
$$

Proof. Let u and v be in I with $u<v$. For each $x \in[u, b]$, let $u \vee x=x^{\prime}$. By hypothesis, $x \leq x^{\prime}$. Since $x^{\prime} \in[u, b], x^{\prime} \leq\left(x^{\prime}\right)^{\prime}$. Since $u x$ is closed for each $x, u x^{\prime}$ $\subset u x$. Then $\left(x^{\prime}\right)^{\prime} \leq x^{\prime}$ so that $\left(x^{\prime}\right)^{\prime}=x^{\prime}$. Let $A=\{u x \mid x \in[u, b]\}$. Dfine the functions

$$
f:[u, b] \longrightarrow A, g: A \longrightarrow[u, b]
$$

via $f(x)=u x$ and $g(u x)=x^{\prime}$. Then $h=g f$ is continuous and $h^{2}=h$. Since $h(u)=u$ and $h(b)=b, h$ is a surjection. It follows that $h(x)=x$ for all $x \in[u, b]$, and hence $u \vee v=v$, i.e., $u v \cap(v, b]=\square$.

As an immediate consequence to the above lemma, one may obtain the following:

THEOREM 3.4. If I is a multi-band such that $x, y \in x y$ and $x y \cap(x, y)=\square$ for each $x, y \in I$ with $x<y$, then I is a multi-semilattice and

$$
x y=[x, y] .
$$

THEOREM 3.5. If I is a multi-band such that $x y \cap(x, y) \neq \square$ for each $x, y \in I$ with $x<y$, then I is a multi-semilattice and

$$
x y=[x, y] .
$$

Proof. Let $x, y \in I$ with $x<y$. Suppose $[x, y]-x y \neq \square$ and let $z \in[x, y]-x y$. Since z is in the open set $I-x y$, let (c, d) be the component containing z in $I-x y$. Since $x y$ is closed, $c, d \in x y$. Then $c d \subset x y$, and $c d \cap(c, d)=\square$. This is a contdradiction. Therefore $[x, y] \subset x y$. Since $x, y \in x y$ for each $x, y \in I$, by using Theorem 3.4, $x y=[x, y]$.

In the following, some multi-semilattice operations on I, other than those that have been given, may be found. Let $a<c<b$.
(1) $x y=y x= \begin{cases}{[x, y]} & (x, y \in[a, c], x \leq y) \\ \{x, y\} & (x, y \in[c, b]) \\ {[x, c] \cup\{y\}} & (x \in[a, c], y \in[c, b])\end{cases}$
(2) $x y=y x= \begin{cases}{[x, y]} & (x, y \in[a, c], x \leq y) \\ \min \{x, y\} & (x, y \in[c, b]) \\ {[x, c]} & (x \in[a, c], y \in[c, b])\end{cases}$
(3) $x y=y x= \begin{cases}\{x, y\} & (x, y \in[a, c]) \\ \min \{x, y\} & (x, y \in[c, b]) \\ \{x, c\} & (x \in[a, c], y \in[c, b])\end{cases}$

Kyungpook University

REFERENCES

[1] Chae, Y., Multi-mobs. Semigroup Forum 5 (1972), 154-159.
[2] Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71(1991), 152-182.
[3] Day, J.M., Algebraic theory of machines, languages, and semigroups, Academic Press Inc., New York, 1968.
[4] Paalman-de Miranda, A.B., Topological semigroups, Mathematisch Centrum, Amsterdam, 1964.
[5] Storey, C. R., The structure of threads, Pacific J. Math. 10(1960), 1429-1445.
[6] Wallace, A.D., On the structure of topological semigroups, Bull. Amer. Math. Soc. 61(1955), 95-112.
[7] \qquad ., Project mob (Lecture notes), University of Florida, Gainesville, 1965.

[^0]: This work is done under the support of Korean Traders Scholarship Foundation.

