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(An apProach front RoPf algekas. and aPPlications)

§ 1.lntr••ti-.D.

The theOry of aline algebraic groups, initiated by ChevaIley ([3J) Wcon- ,
nection of l.ie group theorY, where these groups appeared as algd>r'aie liwm'
grOUps, has~ .~~ther .~~ by Borelt SteiDber~, Tits and 'OtLetS over
the last two decades and 'has made significant contriWtiObs in such area& as
l'~ntatkJ.tI1eory of Lie .. m-oops,6Qite simple, ~lJS,claasicaJ:litt.eIu­
.groups, e~., ~'lnW and HoohscLild on the other ~ have effecti~y
fused ~·mthetep:eaeatation theqry with .the ,tliewyof ;,dline·,~­
braic groups so as to provide an~cient tool especiatIy for the study of Lie
gro'ups, Md this JUlitltraJIy has led us to consider pro-affine ~braie gTOUJ1S,
certain projective limits of afiine ~braic grOH;ps. The~ purpose'.o£ this
pap$' is' w introduce t~ notion·of pTo-affine algebraic groupS 'developed by
Hoehschild aad MQStow in ([7]), :which is based on Hopf algebrag of re­
presentative {uit.cnQnS, and then· to cite some of its applications.

Throughout this,paper, k will always deaore. a field, ~d all tensor pro­
ducts are taken over k.

§ 2.".~ _ebras.
Wet~ tbatail 4tgefnfttmer k (or ..simply a i-algebra) maybe~

as a tri.pIe(A,m, p.) with Aa k-lio.e4r space,m : A®A~A a' k..:mtear •
~~tklltitm., p.: k-+A a k~Jineai map caned the_nit (t1Ii8p), Sflcli
that the' diagrams

A®A®A

.. ®.!
A ® A

l@m
----::>;ll!-, A(8JA

t~

<*> ~.m~~~ at·the •.MeetiJlg of the Koreau.~~iD~
~'1. 19't6.
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are commutative.
A formal dualization of the diagram above (i. e., turning all the arrows

around) immediately leads to th~ definition of coalgebras:

DEFINmON. A coalgebra over k (or simply k-cOlJlgebra) is a triple(C, 0, e)
with C a k-linear space, 0: C-C®C a k-linear map called comtdtiplieation
and e: C-k a k-linear map called the counit (map), which satisfies the
diagram dual to those of a k-algebra, namely

map f: C

c

c ® C

t8

1 ® (J
<:c®c®c

{J"®"1 t
C ® C E<:----­{J

(coassociativity) (coa"ital map)

" A morpkism of a k-coalgebra C to a coalgebra D is a k-Iinear
- D such that the diagrams

c ® c
j ® f

D ® D)0

'01 ra,
c > D

f

are commutative.
A subspace V of a k-coalgebra C= (C, 0, e) is called a sub-coalgebra of C

if 0(V)<V®V, and, in dUs case, the triple (V. 0IV, eIV) is the coalgebra
and the inclusion V-C is a morphism of coaIgebras.

DEFINmoN. Let (C, O. e) be a k-coalgebra and let (A, m, p) be a k-alge­
bra. For k-linear :maps I,g : C-A, defWe

I*g: C-A

o f®g . m
by l*g=mo(/®g)00 : C----:,>C@C---!)-A®A---!)-A Then f*g is a k-linear
map, called the convolution of f and g.

The k-linear space HomJ,(C,A) of all k-linear maps C-loA becomes a k­
algebra with algebra product being the convolution., in which the unit map
is p.oe : C-k-loA.

1>.EFJNmoN. A Hopf algebra over k is a k-algebra E together with k-



algebra morphisms
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o: E--E0E, F;: E-.k

such that (E, G, e) is a coalgebra.

A morphism of Hop! algebras is a k-algebra morphism p : E t--E2 which is
also a morphism of coalgebras. A subspace V of a Hopf algebra E is called
a Hop! subalgebra if it is a subalgebra of E (as a k-algebra) and a sub­
coalgebra (as a k-coalgebra).

DEFINTION. Given a Hopf algebra over k, the two-sided inverse 1) to the
identity map I in the convolution algebra Homi(E, E) is ..called the -.antipode
for E. Thus antipode is a k-linear map 1) : E--E such that 1*'1}= f1 0 e= 1)*1,
f1 and E being the unit and the counit of E.

Let E be a Hopf algebra. Regarding k as a k-algebra in which' the mul­
tiplication k@k-+k is treated as an identification, we obtain the convolution
algebra Homi (E, k ). The convolution x*y, for x, yEHomi (E, k), is given
by x*y= (xQS)y) 00, where iJ is the comultiplication of E, and the unit of
this algebra is the counit F; : E--k of the Hopf algebra E.

We now assume that E has the antipode 7). Then a k-algebra morphism
x : E-k is invertible in the convolution algebra HomA(E, k) with its inverse
being xor;, and the set HOmi-alg(E, k) of all k-algebra morphisms E--k is a

ubgroup of the group of all invertible elements of the convolution salgebra
Homi(E, k). We denote this group by lJ(E).

In order to describe the group (J (E) as a subgroup of the general linear
group GLi (E), we define the following notion of pr.oper maps~

DEFINITION. A k-Iinear map (J" : E-E is called proper if the· diagram

E ® E

E ---->~ E

is commutative.

Then the, map (J"-c°(J" (c=counit of E) defines an isomorphism of the group
of all proper k-algebra automorphisms Autp(E). of E onto the group (J(E).

§ 3. Hopf algebra of representative functions.

DEFINITION. Let G be an arbitrary group, and for a functiong : G--k and



:eEG, .defiAe the left (resp. right) translate x· g(resp.g·x) of g by (x· g) (,)
=g(yx), ({esp. (g·x) 61) =(xy» for all 'YEG.
A Junction i :G-k is ealled representative if all its translates lie in a finite
dimensional space of iunctions.

The :re,~rltative~ on G form a k-algebra R (G) with usual pro­
duct. 1;hegroup 'P.;t~tionGxG-G defines a map r: R(G)-R(GXG)
given by "

r(f) (x, y) = f(xy)

and we see that'r(f) is actually in the subJUgebra R(G)(8)R(G) of R(GX
G), w~~e R(G)®R(G) is reggded as a subalgebra of R(GXG) so that
(g@A) (z,y),-g(x)k(Y) for g,iER(G).

Hence we obtain a HopE algebra structure on R(G) with r beWg the COID­

ultipli~oo. and the ooumt being given by the evaluation e : R(G)--k at 1.
ThiS HopE ~bra ,has an antipOde,' namely, the map 'YJ : R(G)-R(G) de­

wed hy TJ(/)'(x)-':-1(x-1), xEG and jER(G).

DEFINrr:lON. A subalgebra A of the k-algebra R (G) is called fully stable
if it is stable under the left and right translations by elements of G and also
stable under ~e antipodal map TJ : R(O)-R(G). Note that a fully stable sub­
~ra,.A of R(G) is a Hopf suh8lgebra of R(G) which has antipode, and
a k-linear map u. : A-A is prO,per if and only if g(g·x) =g(g)·x for all x
EG and~gEA;

§.. PrcJ.a8iue algebraie gr01l~7

~., A pro-affine algebraic group over k is a group G together with
a H6J;Jf subalgebra A of·R (G) which is invariant' mider the antipOdal map
7J suck that the canonical map

G-O(A)

sew:ijnl£-, each $EG to xOEq(A), where Xo: A-k is the evaluation map
given by; XO (/) = f(x) for fEA, is a bijection.
~,-~-<1JJpl~ofpql~ /tmctioos on G and is deoted

by' -IJ(G)., A morpkis11t of pro-ajftne algebraic groups is a group homomor­
phismp: G-H such that if fE{J(H), the..n fo pE{J(G). Note in this case
that tJw. map /--1>/0/1: .(J(H)-IJ.(G) is a morplrlsm of Hopf algemas.

. .,' ;

REMARKs, (1) If {J(G) is finitelyg~eratedas a k-algebra, then G is a
usual aftine.~blaic ~p. over, k ([2)" (5]).

.(2) A pro-affine algebraic group G. over an algebraically closed field k is a
projective liritit of affiine' algebraic gr~ups. (This fonows from the fact that
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{J(G) is a reduced (i. e., 0 is the only nilpotent element of {J(G» commu-
tative Hopf algebra, and as such it is the union-of the family 'of finitely
generated fully stable subalgebras of {J(G) ([l3J)~ Moreover, if A is any
finitely generated fully stable suhalgebra' of {J(G), then ".f1<A) is an affine
algebraic group ([5J), and for every pair At. A 2 of finitely generated fully
stable subalgebras of .,4(G) with A 1<A2, we' have the corresponding affine
algebraic groups i;(A1) and G(A2), and the restriction map 'tfJ(A2)-~(Al)'

which is surjective (because k is algebraically closed). Thus (J(.,4(G)) =G is
the projective limit of the system of the groups (J(A) ~~losed maps fJ
(A2)~(Al)' )

(3) The argument similar to the proof of (2) leads to ~he following result
([7J) which is known in the aHine case ([5J).

THEOREM. Let A be a reduced commutative Hopf algebra with auti'pode and
assume that tke ground .field k is algebraically closed. Then the group ti(A)
is a pro-affin~ algebraic group with f1(dJ(A» =A.

DEFINITION. For a subgroup H. of a pro-affine algebraic group G, let!J (H)
denote the annihilator of H in ,Q(G) (i. e., the ideal of .,4(G) consisting of
f such that flH-O), and let H* he the annihilator of /J(H) in G, i. e.,
the subgroup of G consisting Of the elements xEG with f(x) =0 for ~ . f
E!J (H). _Then H* inherits the structure of apro-affine~aic group,
with .,4(H*) being identi6ed with fJ(G) /!J(H). H* is called the -algebraic
hull of H in G, and we say that H is an algebraic subgroup of G if H=
H*.

Given a normal algebraic subgroup H of pro-affine algebraic group G, the
quotient group G/ H inherits the structure of a pro-affine algebraic group,
with .,4(G/H) being identified with .,4(G)H, the H-fixed (under left transla­
tions) part of fJ(G). The canonical map G-G/H is then a morphism and
satisfies the usual universal property of the quotient group.

Most of the results in affine algebraic groups may be extended to the pro
-affine case. Below we discuss some of such results concerning the structure
of pro-affine algebraic groups.

(i) First we shall consider the decomposition into components of a pro­
affine algebraic groups. We say that a pro-affine algebraic group G is con­
nected if .,4(G) is an integral domain and is pro-finite if fJ(G) is the union
of the family of finite-dimensional fully stable subalgebras, so that G appears
as the projective limit of finite groups.

THEOREM ([5J). Let G be a pro-affine algebraic group over an algebraic­
ally closed field k. There is a 1Wrmal connected algebraic stWgr.oup (;1 of G
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such that GIG1 is pro-finite.

(ii) 'Ne~t we shall consider the Mostow decomposition into the unipotent
radical and a maximal reductive subgroup.

A subgroup K of an affine algebraic group G is called unipotent if, for
every flnite:"'dimensional left stable subspace V of fJ (G) , the representation
of K by left 'tralll>lations on V is unipotent There is a normal unipotent sub­
group G. ot G tha~ contains every nonnal unipotent subgroup of G. Ga is
called th~ uniPoten~ radical of G. G.. is an algebraic subgroup of G. A sub­
group of 'G is.called reductive if its representatioin by left traI,lslations mi
fJ(G) is ·semisimple. Then we have:

THEO,REM ([7J). Let G be an affine algebraic group over an algebraically
closed field· k· a/characteristic O. "There is a reuctive algebraic subgroup K
of G such that G is the semidirect product G.· K. Moreover, if L is any re­
ductive subgroup of G, then there· is an element t in [G, G..J* such that t Le-I

<K.

(iii) The notion and the structure of solvable affine algebraic groups may
be extended· to the pro-affine case. A subgroup H of a pro-affine algebraic
group G is called pro-solvable (resp. pro-toroid) if, for every finitely genera­
ted :fl:illy stable subalgebra T of fJ (G) , the image of (J (fJ (G) ) =G in (J (T)
under the l'estriction map (J(fJ«(J)-(J(T) under therestriction map(J(fJ(G»
-fj(T) is solvable (resp. a toroid).

THEOREM ([10J). Let G be a connected pro-affine algebraic group over an
algebraically closed field k. Then there exists a pro-toroid K such that G is
the semidirect product G... K. Moreover, if L is any, there exists tEG.. such
that tLt-:'I<K.

For results concerning Borel subgroups and others, see DOJ.

§ 5. Universal algebraic hull.

Let II be a category of groups such that the full linear group GL(V) of
every finite-dimensional vector space V over k is in ().

For every representation p : G-GL (V) , dim V<ex>, in e, let [pJ denote
the k-linear span of the coefficient functions (i. e., functions· of the form
lop, where Ais a k-linear functional on End1(V», and we let tJ(G) =
U,[pJ, where p runs over all finite-dimensional representations of G in ().

6(G) is a fully stable subalgebra of R(G), and hence is a Hopf algebra
with the antipodal map. We may also view ()(G) as a universal representa­
tion space of G in the sense that if p : ~GL(V), dim V< ex> , is a rePre­
sentation in ll, then there exists an injective k-linear map V-0 (G) which
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is equivariant under the action of G. The pro-affine algebraic group G*=lfJ.
(t2 (G» is called the universal algebraic hull of G. (The term "universal"
may be justified as follows:
We have seen in § 2 that G*=(J. (0 (G) ) is canonically isomorphic with
Autp«(I(G», the group of all proper automorphisms of (leG). Identifying
G* with Autp (t2 (G) , G* then consists of all k-algebra automorphisms q : .(1 (G)
-t2(G) such that u: (J(G)-f2(G) such that u(f· x) =u(f) . x for fE
@(G) and xEG. For every finite-dimensional representation p: G-GL(V)
in lJ, view V as a finite dimensional subspace of (I (G) stable under left and
right translations. Then the restriction Gv* of G* to V is isomorphic with
the usual Zariski closure p(G)* of peG) in GL(V).) wehave, G*=limGv*,

+-
where V runs over the directed set of finite-dimensional stable subspaces of
(J(G).

The unipotent radical U(G) of G* is called the unipotent hull of G.
The construction of G* above can be carried out, for example, in any of

the following categories @.

1. Discrete groups, all finite-dimensional representations.
2. Lie groups with finitely many connected components, all finite-dimen­

sional analytic representations.
3. Topologcial groups, all finite-dimens!onal continuous representations.

§ 6. Applications.

Below we cite some of the applications of the pro-affine algebric group
theory (or, to be more precise, the applications of the functor G-G*).

(1) TANAKA DUALITY ([4J).
If G is a compact group, Tanaka duality in Harmonic Analysis states in

our language that the canonical map 7:: G-G* is an isomorphism (of to­
pological groups), where G*=Homk-alg «(I (G) , R) is equipped with the fini­
te-open topology. For Tanaka Duality in Lie groups, see ([8J).

(2) DISCRETE SUBGROUPS OF LIE GROUPS.
Malcev proved in [9J that a finitely generated torsion-free nilpotent group

D can be embedded into a simply connected nilpotent real analytic group G
as a uniform subgroup (i. e., G/ D compact) , and that D determines G
uniquely.

Although a discrete uniform subgroup D of a simply connected solvable real
analytic group G does not always determine G, their unipotent hulls U(D)
and U (G) are naturally isomorphic, and G can be described in terms of
U(G).

If G is a polycyclic group (resp. simply connected solvable real analytic
group), then the unipotent hull U(G) is finite-dimensional, and, in fact,
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~U(0 . npxkG (r~. dim G) ([12J). (Om- Malcev embedding mentio­
n.ed~~ is~ the oon~ map D-4U(D).)

Using this r~t ~ad exploiting the isomorphism U{D) U(G)t, Mostow
([l2])r6J»ioyed the cQDjecture of P. Hall sOlting that every polycyclic group
has a ~thful represenfa,qoo. by integral l'llatrices. (This conjecture was first
proYMlby;,L.Ausl~ in [lJ).

(3)~~~TIQNOF REAL ANALYTIC GROUPS.
A1I.tl.i-wrsal co1p:;te:&ijication of a real analytic group G is a coutiuuous ho­

momoJV~ -..of G iuto a complex aualytic group Gc which is 1I.ni1)81"sal iu
the sense tha't if 7J is a contin:t:~ous homomorpmsm of G into a complex an­
alyti& .group H, there is a unique morpmsm r/ : Gc- H of complex analytic
groups such that ")'0-'=1].

The ,notion of the universal complexilication plays a central role in the re­
presentation theory of Lie groups ([4J), and its construction becomes more
transparent under the G* setting. Let -. : G-G* be the canonical map. Then
7: induces a map 7: of the Lie algebra .Il(G) of G into derivations of fJ (G),
and thus Lc='C(.Il(G»Q9RC is a complex Lie algebra of derivations of fJ(G).

Corresponding to Le, there is a complex analytic subgroup Gc of G*.
Then 7: (G) <Gc and r : G--Gc is a universal complexmcation.
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