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oON PRQ—AFFINE ALGEBRAIC GRQUPS‘*’
(An approach from Hopf algebras and applications)

§ 1. Introduetion.

The them'y of affine algebra;lc groups, initiated by Chevalley ([3]) incon-,
nection of Lie group theory, where these groups appeared as algebraic linear
groups, bas been further developed by Borel, Steinberg, Tits and others over
the last two decades and has made significant contributions in such areas as
repmsentauon theuxy of Lie groups, finite simple groups, classical Tinear
groups, efc., Mostow and ‘Hochschild on the other hand have effectively
fusadmhmiqummthempresentamthemymththmthemo{aﬁm alge-
braic groups so as to provide an efficient tool especially for the study of Lie
groups, and this naturally has led us to consider pro-affine algebraic groups,
certain projective limits of affine algebraic groups. The main purpose of this

~ paper is to introduce the notion of pro-affine algebraic groups developed by
Hochschild and Mostow in ([7]), which is based on Hopf algebras of re- °
presentative functions, and then to cite some of its applications.

Throughout this paper, % will always denote a field, and all temsor pro-
ducts are taken over £.

§2 Hﬁmf algebras.

We rﬁﬂaﬂ that an algebra over Iz (or simply a k~algebra) may be d/eﬁhﬂd
as a triple . (A,m,,u) with A a k-linear space, m : AQA—A a k-linear miap
called muiziplication, 1 : k~—>A a k—lmear map called the uzit (map), such
that the diagrams

A
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are commutative.
A formal dualization of the d]agram above (i.e., turning all the arrows
around) immediately leads to the definition of coalgebras:

DEFINITION. A coalgebra over k (or simply k-coalgebra) is a triple(C, 4, ¢)
with C a %-linear space, J : C—»C®C a k-linear map called comuliiplication
and ¢ : C—k a k-linear map called the counit (map), which satisfies the
diagram dual to those of a %-algebra, namely

1® s c&C
CR®CRC «e——cCcRC e@z/ \1@8
3'®'1 T ’ 13 CA® k T k ® C
C®C €—— ¢ ~ C/
" (coassociativity) . . (compital map)

A morphism of a k-coalgebra C o a coalgebra D is a k-linear~ map f:C
—D such that the diagrams

C@C——L@-—QD@D

4 C —-—-> D
& CT )!\317 \ /
C -——-——;—-—-} D
are commutative.
A subspace V of a k-coalgebra C=(C,d,¢) is called a sab-coalgebra of C

if $(V)<VQ®YV, and, in this case, the triple (V,d|V,¢|V) is the coalgebra
and the inclusion V—C is a morphism of coalgebras.

DeFinrrioN. Let (C,0,¢) be a k-coalgebra and let (A,m, ) be a E-alge-
bra. For k-linear maps f,g : C—A, defime

f *g : C—A
by frg=mo (fQg)od : C~*>C®C-——>A®A-———>A Then f*g is a k-linear
map, called the convolution of f and g.

The k-linear space Hom;(C, A) of all k-linear maps C—A becomes a %-
algebra with algebra product being the convolution, in which the unit map
is poe : Cok—A.

DermITION. A Hopf algebra over k is a k~a1gebra E together with k-



On pro-affine algebraic groups ) 3
algebra morphisms

0 E—>EQRE, c¢:E—k
such that (E,d,¢) is a coalgebra.

A morphism of Hopf algebras is a k-algebra morphism p : E;—E, which is
also a morphism of coalgebras. A subspace V of a Hopf algebra E is called
a Hopf subalgebra if it is a subalgebra of E (as a k-algebra) and a sub-
coalgebra (as a k-coalgebra).

DerINTION. Given a Hopf algebra over %, the two-sided inverse » to the
identity map I in the convolution algebra Hom;(E, E) is called -the .antipode
for E. Thus antipode is a %-linear map 7 : £—E such that Ixp=ypoe=n*l,
u« and & being the unit and the counit of E.

Let E be a Hopf algebra. Regarding % as a %-algebra in which the mul-
tiplication 2®#%—*# is treated as an identification, we obtain the convolution
algebra Hom;(E, %2). The convolution zxy, for z,yeHomy(E,#%), is given
by z#y=(x®y)d, where ¢ is the comultiplication of E, and the unit of
this algebra is the counit ¢ : E—#% of the Hopf algebra E.

We now assume that E has the antipode . Then a 4-algebra morphism
z 1 E—*F is invertible in the convolution algebra Hom,(E, &) with its inverse
being zoy, and the set Homy ., (E, k) of all k-algebra morphisms E—% is a

ubgroup of the group of all invertible elements of the convolution salgebra
Hom,(E, k). We denote this group by §(E).

In order to describe the group @(E) as a subgroup of the general linear
group GL;(E), we define the following notion of proper maps.

DEFINITION. A %-linear map ¢ : E—E is called proper if the "diagram

1
EoE L7, recE
5 Py
E B E
(o3

is commutative.
Then the. map o—¢og (e=counit of E) defines an isomorphism of the group
of all proper %-algebra automorphisms Aut,, (E). of E onto the group G(E).
§ 3. Hopf algebra of representatlve functlons
DerFINITION. Let G be an arbitrary group, and for a functiong : G— and
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z=G, define the left (resp. right) translate z-g(resp.g-x) of g by (z-g) (3)
=g (yz). (!’9&11 (g-2) () =g (zy)) for all y=G.

A function g : G—F is called representative if all its translates lie in a finite
dimensional space of functions.

The representative fupctions on G form a k-algebra R(G) with usual pro-

duct. The group mtﬂﬂpiﬁmﬂon GXG—*G defines a map 7 : R(G)—R(GXG)
given by

7(f) (z, ) =F(zy)

and: we see that x(f) is actually in the subalgebra R(G)®R(G) of R(GX
G), where R(G)QR(G) is regarded as a subalgebra of R(GXG) so that
(e@h) (z, ) =g (2)h(y) for g,4=R(G).
Hence we obtain a Hopf algebra structure on R(G) with 7 being the com-
ultlphcatmn and the counit being given by the evaluation ¢ : R(G)—# at 1.
This Hopf algebra has an antipodé, namely, the map y : R(G)—R(G) de-
fined by ﬂ(f) (@).=f(z"), z=G and fF=R(G).

DEFINL'I‘K)N A subalgebra A of the k-algebra R(G) is called fully stable
if it is stable under the left and right translations by elements of G and also
stable under the antipodal map » : R(G)—R(G). Note that a fully stable sub-
algebra A of R(G) is a Hopf subalgebra of R(G) which has antipode, and
a k-linear map o : A—A is proper if and only if a(g-z)=ac(g) -z for all =
&G and g A : ,

| '§4‘ Pro-affine algebraic groups.

© DEFpaTION.. A pro-affine algebraic group over k is a group G together with
a Hopf subalgebra A of R(G) which is invariant "under the antipodal map
7 such that the canonical map

G—4g(4)

sendmg; each z=G to z°=@(4A), where z°: A—% is the evaluation map
given by. z° () =f(z) for fEA, is a bijection.

A iszcalleds the Hopf abgebro of polynomial functions on G and is deoted
by A(G). A morphism of pro-affine algebraic groups is a group homomor-
~ phism p : G—H such that if fed(H), then fo pe4d(G). Note in this case
. that the map f—fop: ﬂ(H)"»ﬂ(G) is a morphism of Hopf algebras.

REMARKS (1) I QG is ﬁmtely generated. as a k-algebra, then G is a
usual affine algebraic group over. k([2],[5D-

(2) A pro-affine algebmlc group G over an a]gebrmcaﬂy closed field £ is a
projective limit of aﬁme a]gebraxc groups. (This follows from the fact that
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A(G) is a reduced (i.e., 0 is the only njlpotent element of #4(G)) commu-
tative Hopf algebra, and as such it is the union of the family of finitely
generated fully stable subalgebras of 4(G) ([13]). Moreover, if A is any
finitely generated fully stable subalgebra of #(G), then @(A) is an affine
algebraic group ([5]), and for every pair Al, A, of ﬁmtely generated fully
stable subalgebras of 4(G) with A,<{4,, we have the correspondmg affine
algebraic groups @(4,) and @(A4,), and the restriction map Q(Az) —@(A,),
which is surjective (because % is algebraically closed). Thus Q(ﬂ(G)) =G is
the projective limit of the system of the groups @(4) and closed maps G
(A9)—G(4y).)

(3) The argument similar to the proof of (2) leads to the following result .::
({7 which is known in the affine case ([5)).

THEOREM. Let A be a reduced commutative Hopf algebra with autipode and
assume that the ground field k is algebraically closed. Then the group @G(A)
is a pro-affine algebraic group with A(G(A)) =A. '

DerFmNITION. For a subgroup H of a pro-affine algebraic group G, let 4(H)
denote the annihilator of H in 4(G) (i.e., the ideal of 4(G) consisting of
S such that f]|H=0), and let H* be the annihilator of $(H) in G, Le,
the subgroup of G consisting of the elements z&G with f(z) =0 for il . F
&4(H). Then H* inherits the structure of apro-affine algebraic group,
with #(H*) being identified with #(G)/4(H). H* is called the algebraic

hull of H in G, and we say that H is an algebraic subgroup of G if H=
H*

Given a normal algebraic subgroup H of pro-affine algebraic group G, the
quotient group G/H inherits the structure of a pro-affine algebraic group,
with #(G/H) being identified with #(G)¥, the H-fixed (under left transla-
tions) part of 4(G). The canonical map G—G/H is then a morphism and
satisfies the usual universal property of the quotient group.

Most of the results in affine algebraic groups may be extended to the pro
-affine case. Below we discuss some of such results concerning the structure
of pro-affine algebraic groups.

(i) First we shall consider the decomposition into components of a pro-
affine algebraic groups. We say that a pro-affine algebraic group G is con-
nected if 4(G) is an integral domain and is pro—finite if 4(G) is the union
of the family of finite-dimensional fully stable subalgebras, so that G appears
as the projective limit of finite groups.

TuroreMm ([5]). Let G be a pro-affine algebraic group over an algebraic-
ally closed field k. There is a normal connected algebraic subgroup Giof G



6 . Dong Hoon Lee
such that G/Gy is pro-finite.

(i) Next we shall consider the Mostow decomposition into the unipotent
radical and a maximal reductive subgroup. ‘

A subgroup K of an affine algebraic group G is called wnipotent if, for
every finite-dimensional left stable subspace V of 4(G), the representation
of K by left translations on V is unipotent. There is a normal unipotent sub-
group G, of G that contains every normal unipotent subgroup of G. G, is
called the unipotent radical of G. G, is an algebraic subgroup of G. A sub-
group of G is called reductive if its representatioin by left translations on
A(G) is semisimple. Then we have:

TueoReM ([7]). Let G be an affine algebraic group over an algebraically
closed field k of characteristic 0. There is a reuctive algebraic subgroup K
of G such that G is the semidirect product G,-K. Moreover, if L is any re-
ductive subg‘roup of G, then there is an element t in [ G, G,)* suchthat ¢ Li™?

<K.

(iii) The notion and the structure of solvable affine algebraic groups may
be extended to the pro-affine case. A subgroup H of a pro-affine algebraic
group G is called pro-solvable (resp. pro-toroid) if, for every finitely genera-
ted fully stable subalgebra T of 4(G), the image of @(W(G))=G in @(T)
under the restriction map @(#(@))—@(T) under the restriction map §(d(G))
~@(T) is:solvable (resp. a toroid).

TaroreM ([10)). Let G be a connected pro-affine algebraic group over an
algebraically closed field k. Then there exists a pro-toroid K such that G is
the semidirect product G, - K. Moreover, if L is any, there exists t=G, such
that tLt'<K.

For results concerning Borel subgroups and others, see [107.

§5. Universal algebraic hull.

Let @ be a category of groups such that the full linear group GL(V) of
every finite-dimensional vector space V over k is in €.

For every representation p : G>GL(V), dim V<co, in @, let [p]denote
the 2-linear span of the coefficient functions (i.e., functions of the form
Jop, where 2 is a k-linear functional on End;(V)), and we let €(G)=
UJp], where p runs over all finite-dimensional representations of G in €.

¢(G) is a fully stable subalgebra of R(G), and hence is a Hopf algebra
with the antipodal map. We may also view €(G) as a universal representa-
tion space of G in the sense that if p: G-GL(V), dim V< oo, is a repre-
sentation in @, then there exists an injective %-linear map V—€(G) which
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is equivariant under the action of G. The pro-affine algebraic group G*=@
©(G)) is called the universal algebraic hull of G. (The term “universal”
may be justified as follows: '
We have seen in §2 that G*=@(€(G)) is canonically isomorphic with
Aut,(0(G)), the group of all proper automorphisms of €(G). Identifying
G* with Aut,(@(G), G* then consists of all £-algebra automorphisms o : €(G)
—@(G) such that ¢ :€(G)—€(G) such that o¢(f- z)=0(f) -z for fe=
©(G) and z=G. For every finite-dimensional representation p : G—GL(V)
in @, view V as a finite dimensional subspace of ©(G) stable under left and
right translations. Then the restriction Gy* of G* to V is isomorphic with
the usual Zariski closure p(G)* of o(G) in GL(V).) we have, G*=IimGy¥,
where V runs over the directed set of finite-dimensional stable subsp;;es of
e(G).

The unipotent radical U(G) of G* is called the unipotent huil of G.

The construction of G* above can be carried out, for example, in any of
the following categories €.

1. Discrete groups, all finite-dimensional representations.

2. Lie groups with finitely many connected components, all finite-dimen-

sional analytic representations.
3. Topologcial groups, all finite-dimenslonal continuous representations.

§ 6. Applications.

Below we cite some of the applications of the pro-affine algebric group
theory (or, to be more precise, the applications of the functor G—G*).

(1) Tanaka Duaurry ([47).

If G is a compact group, Tanaka duality in Harmonic Analysis states in
our language that the canonical map 7 : G—G* is an isomorphism (of to-
pological groups), where G¥=Hom;-,;; (€(G), R) is equipped with the fini-
te-open topology. For Tanaka Duality in Lie groups, see ([81).

(2) DiscreTE SUBGROUPS OF Lie GROUPS.

Malcev proved in [9] that a finitely generated torsion-free nilpotent group
D can be embedded into a simply connected nilpotent real analytic group G
as a uniform subgroup (i.e., G/D compact), and that D determines G
uniquely.

Although a discrete uniform subgroup D of a simply connected solvable real
analytic group G does not always determine G, their unipotent hulls U(D)
and U(G) are naturally isomorphic, and G can be described in terms of
U(G).

If G is a polycyclic group (resp. simply connected solvable real analytic
group), then the unipotent hull U(G) is finite-dimensional, and, in fact,
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dimcU(G) =rankG (resp. dim G) ([12]). (Our Malcev embedding menno—
ned above is mevely the canopical map D—-U(D).)

Using this result and exploiting the isomorphism U(D) U (G), . Mostow
(C12D reproved the conjecture of P.Hall stating that every polycyclic group
has a faithful representation by integral matrices. (This conjecture was first
pvrowad by L. Auslander in [17).

(3) CoMPLEXIFICATION OF REAL ANALYTIC GROUPS.

A universal complezification of a real analytic group G is a coutiunous ho-
momorphlsm 7« of G iuto a complex aualytic group G which is universal iu
the sense that if » is a continuous homomorphlsm of G into a complex an-
alytic .group H, there is a unique morphism 7’ : Gc—H of complex analytic
groups such that 7/or=7y.

The notion of the universal complexification plays a central role in the re-
presentation theory of Lie groups ([47), and its construction becomes more
transparent under the G* seiting. Let © : G—>G* be the canonical map. Then
z induces a map 7 of the Lie algebra 2(G) of G into derivations of #(6),
and tlms Le=t(L(G))RxC is a complex Lie algebra of derivations of #(G).

Corresponding to Lc, there is a complex analytic subgroup G¢ of G*.
Then 7(G)<G¢ and r : G—G¢ is a universal complexification.

Al
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