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EXTREME POINTS OF CONVEX SETS OF BICONTRACTIONS ON [,

By C.W.Km AnD J.1. UM

1. Introduction.

A linear operator A from [, into itself with [|A;<1 and ||A|l.=£1 will
be called a bicontraction on /.. Let <’ denote the convex set of bicontrac-
tions on [.. Let @’ denote the convex set of positive bicontractions A on
I, (called doubly substochastic operators or matrices), that is, Aed’ and
Az=0 for each z (0=z<l.). Mauldon [5] gave a direct proof to a result
of Kendall and Kiefer [27] that the set of extreme points of infinite doubly
stochastic matrices is the set of infinite permutation matrices. The purpose of
this paper is to give a direct proof to another result of Kendall and Kiefer
[27 on the set of extreme points of @ and a characterization of the set of
extreme points of ',

We assume that 1<p=<oco. Let [/,] dence the vector space of bounded
linear operators from [, into itself. Note that <[/, JN[l.]. Let ¢=(d;;:
j=1,2, ), where ;; is the Kronecker delta. Let {f,g)=2:/()g () (f<l,,

el.).
£ Let)‘X denote the vector space of infinite real matrices (e;;) such that sup;
Y jla;;l <oo and sup;Xl;la;;| <oo. Then there exists a bijection between [/;]
N[l.] and X. For each Ae[/;]JN[l.], if we define the matrix (a;;) by
a;;=Ae;(i) (={e; Ae;), where i,j=1,2, .-, then

(1) Az(i):—'Z]aux(]) (.’L‘Elm, i=1,2, '")s
(2) 1Al =sup;2;la;;] <oo, ||All.=sup;2;le;;| <co.

Conversely, each matrix (g;;) in X defines a unique operator A in [Z,]N
[l..] satisfying (1) and (2). Thus, we shall identify [/,]N[l.] with %
and, in particular, also write

I'={(a;j) €X : sup; 2;la;;| <1, sup; 23 ;la;;| =1}
By the Riesz convexity theorem, we have that
[ JN]S Nigpse [, so that < may be topologized by the weak

(strong) operator topology for [[,]. The weak operator topology for [7,]
will be denoted by the /,-w.o.t. and the strong operator topology for [1,]
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by the [,-s.0.t. Each A=(e,;;) in [/;]N[/.] as an element of [{,] deter-
mines the adjoint A* in [/.] which is represented by the transpose (a*;;)
of the matrix (a,-_i) as

A*z(j)=2Za*;;x () = D82 () (x€l.,i=1,2,)

with ||A*||.=|lAll; and ||4*]];=||A]l.. It is easily seen that both [/;]N[/.]
and & are self-adjoint, [ N[ J=LINH.D* and &/'=J'*. By the
l,-strong* operator topology (the [;-s*.0.t.) for [, 1N[I.], we shall mean
the topology induced by e-neighbourkeeds, an e-neighbourhcod of A=(a;;)
in [,]N[{.] as the set

{B: |(A—B)z,||;<le, |(A*—B¥)yl1<le,i=1,2, -, 1},
where B=(h;;)) €[L1N[L.]; 1 >+ Zny 315 *** ¥2 €41, OF equivalently
{(blj) : Zklakj_bkjl <59 Eklaik—"bikl <5, (Z’ ]=1: 2’ "% 7!) } .

For each doubly substochastic (d.s.s.) matrix A=(a;;), A€D’, we see
that 0<¢e;;<1 (4,/=1,2,+), X1 for each j, and ;a;=1 for each i.
Ad.s.s. matrix (a;;) is called weakly doubly stochastic (w.d.s.) or weak*
doubly stochastic (w*.d.s.) according as 3};a;;=1 for each 7 or 2ap;=1 for
each j. Let @, and @,* denote the convex set of w.d.s. matrices and the
convex set of w*. d.s. matrices. A d.s.s. matrix (a;;) such that Xa;=1
for each i and }j4a;;=1 for each j is called doubly stochastic (d.s.). If we
denote by @ the convex set of d.s. matrices, then T=@,NQP,* Define
the sets 9/, P, and P, * as follows:

@’: {(aij) EQ), : a,-j=0 or 1 (1,j=1, 21 "')}7

D=9 NDy, Pu*=P' ND,* _
Note that each matrix in 9’ has at most one entry 1 in each rcw znd in
each column with remaining entries equal to 0, and that each matrix in 9,
(P,*) has precisely one entry 1 in each row (column) and at most one en-
try 1 in each column (row) with remaining entries equal to 0. Denote by

9 the set of infinite permutation matrices.
For each A= (a;;) in [/,], the positive operator |A| : I,—l, defined by

[Alz () =sup{lAy ()| : |yl sz, y€ii},

where 0szx€!l,,i=1,2, - i .

is called-the (linear) modulus of A It follows readily that [A]=(le;l),
|A$(Z)|<1Al|$l(l) (17611, i=1,2,-), llAlll;=}lAl, and lAl*;lA*l.

We see also that [||Alll,=|lAll,<1 (p=1, ) for each A in . Let d,,
S, and & be subsets of < that are defined by

de={Acd : |AI€D,}, J, =4S : |A|l €D,
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={Aed : |AleD)}.
Define ¢’, Q,,Q,,*, and Q by
O={Acd : |AleP}, Q= {Aedw: 1Al €Dy},
0. *={Aed,*: |AleP,*}, 0=1{Aed: |Al€D}.

For each convex subset €@ of ', let ext €@ denote the set of extreme
points of ©. ‘An element A of € is called an extreme point (an extreme) of

@ if and only if Az%(B—i-C) and B,C<@ imply A=B=C. Equivalently,

A€ ext @ if and only if BE and A+-Be@ imply B=(. Suppose that o’
is endowed with a topology r and . The convex hull of & is denoted
by ch & and the closed convex hull of & in the topology ¢ by cch(&: 7).

In section 2, we shall give direct proofs to Theorem 1: ext D,=2, and
Theorem 2 (Kendall and Kiefer): ext @’=9%’. In Section 3, we shall prove
(Theorems 3 and 4) that ext I'=0,UQ,* and ’=cch (Q:ly-w.o0.t.). It
is also shown (Theorems 5 and 6) that J *gcch(a {;-s.0.t.) and S&cch
(Q:1-s.0.1.).

2. Extreme peoints of Q,.

THEOREM 1. ext D=2,

We see readily that P,cext @D,. It is therefore sufficient to show that
Dy~ Py Dyy—ext D,,. Note that D— D= (D—D—P ) U(D—D). It is
known ([2],[5]) that P=ext @, so that D—PD,—ext D, ThUS it remains
to verify the following proposition.

PROPOSITION 1. Dp—D~ DT Dy Xt LDy

Let A= (a;;) EDp—D—Dw Denote by I the set of positive integers. Let
t;=Zwy;(jeI). Define J.cI (r=0,1,2) by

Jo= {2 ;=0 Ji=1{i: 0<;<t}, Jo=1i:;=1}.

Note that the sets Jy, J;, and J, constitute a partition of the set 1. If J,
=¢, then J;#¢ and the matrix A’=(a;; i€l j€J;) belongs to D—2, so
that the matrix A is not an extreme of Q,.

We now assume without loss of generality that J,#¢ and 0<la;;=#,<1.
We shall follow the terminology of Mauldon .[5]. An ordered pair G, j),
where i, j€1, is called a vertex of A if 4;;>>0. Note that(1,1) is a vertex
of A by assumption A finite collection of distinct vertices of A, {(i,, j,) :
r=0,1, -+, m}, is called a path in A (starting at the vertex (1,1)) if

( 1 ) zo=10=1,
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(li) either iy=1ig OF J1=Jos

(Gii) if i,—,=i,, then j_;#j,=j.., and if j,_,=j, then i,_#i, =i
Let K denote the union of all paths in A. Note that for each vertex (7,7)
in K, there exists at least one path leading to the vertex (5, 7). If there
exist two distinct paths leading to the same vertex, there must exist a loop.
By a loop we shall mean a finite collection of distinct vertices {(i,, j,) : r=
0,1, -, 2n+1} satisfying the conditions (ii) and (iii), together with the
condition

(iv) Zo=izm+1 OF jo=1Jza+1-

LEMMA 1. Suppose that A€ D,—D—D,, and 0<ay <t;<1. Then

(1) if there exist two distinct vertices (k,m) and (k,n) of A such that
m,neJy, then A is not an extreme of Dy;

(11) if there exists a loop in A, then A is not an extreme of Dy.

Proof. (i): Define the positive number 4 and the matrix B= (§;;) by
b=min {akm’ @y 1 — 14, l_tn} »
op—20, bpa——b, b,‘j=O elsewhere.

Then A+Be&D,, so that A is not an extreme of Q,.
(Gi): Let {(G,j,) :r=0,1,-,2r+1} be a loop in A such that i{#isn
and jo=7jp,.1. Define the positive number & and B=(4;;) by

b=min {d,',jr . T=0, 1, "oy 2n+1} .
birjr: (—l)rb (r=09 19 "ty 2ﬂ+1), b;j=0 elseWhere.

Then A+BeD,, so that A is not an extreme of Q.
For each A€D,—D—P,, with 0<a;; =<1, define

T:m (m:l’ 2, .--)

if and only if there exist g&J; with ¢#1 and a path {(7, j,) : r=0,1, «--, m}
such that either

(3) m=2n+1(n=0, 1, 21 "')’£1=i0(=1)’
erJZ(r=1, “',ﬂl"‘l), Jm™¢q, OF
) m=2n(n=1,2,-), s1=j(=1),

jr€J2(7=2, "ty m—l)’ Ju=q.
Otherwise, let T=o0.

LEMMA 2. Suppose that AcD,,—D—P,, and 0<ay; <t,< 1. If T<oo, then

A is not an extreme of D,
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Proof. For T<2, A is not an extreme of @, from Lemma 1(i). Sup-
pose that T=3. If (3) holds, then the positive number » and the matrix B
= (b;;) are defined by

(5) b=min {1—t1,1—-tq, @, i, (r=0,1, -+, m)},

6) bi,;,=(—=1)"b(r=0,1, -, m), b;;=0 elsewhere.

If (4) holds # and B= (4;;) are defined by (5) and (6) provided that r=
1, 2, -, m. In both cases, A+B&Q,, sothat A is not an extreme of D,.

Proof of Proposition 1. Let A= (a;;) €D,,—D—P,, with 0<a,;<1,<1. In
view of preceding lemmas, we shall assume that for each (7, j)€K, ;=1
whenever ;22 and there exists a unique path leading to the vertex (i, ),
and that every path can be indefinitely continued.

The following argument is a modification of Mauldon’s argument [5, pp.
334, 335]. For each (i,j)€K with (4,7) % (1,1), let (i, ;) denote the pen-
ultimate vertex of the unique path leading to the vertex (7,7). Define the
matrix D= (d;;) by

(a,-j if aijé—%—,
d;;= | (G,7=1,2, ).
L,rl if a;> 3
For each(s, j) €K with j=2, let o;; denote the sum of the entries of the

matrix D in the row or in the column containing (7,j) and PG, ). It is
easily seen that 0,;=0 or 1.

CasE 1. %—<t1<1. Define the real number w and the matrix (w;;) by

w= (t;—1) / 21du,
for (1’])€K37:1a

w
_ dpiir iy for G. i P>
wij=  ——£22— or (i, /)€K, jz2,
i 045
0 elsewhere.

If follows that 0<{|w;;]<(<1 for each (;,j)€K. Define the matrix (m,))
by
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w for (G,)) ek, j=1,

miy=\ wimpip for (1) €K, jz2,
1 0 elsewhere.
Note that 0<(jm;;] <1 for each (i, j) €K. Define the matrix B=(4;;) by
bij=mi;d;;(i,j=1,2, «+).

Note that 4;;=0 for each (i,j) &K and 0<[|};;]| = |d;;| <a;; for each ()
K. We have then Jby=wlidy=¢—1<0, so that
0<Zlan+bn) =26 —1<6,<<1, 2i(an—ba)=1.

We now show that 33,5,;,=0. It is easy to see that, since (1,1)=p(1, %) for
(1, ) €K with k=2,

b= (—Dwdpdu/ D jendi; for (1L, k)€K, k22, exdéy=udy.
Thus, Xispbiz=—bny. On the other hand, &n argument of Mauldon
(5, pp. 334, 335] shows that

2ba=00G=22), 2by;=0 (j=2).
Thus, A+B<Q,, so that A is not an extreme of D,
CAsE 2. O<-t1§~§—. Define the matrices (w;;) and(m;;) by

1 for G, )k, j=1,

wy= | —Gted __ for (ij) €K, j22,
dpii p—0ij
0 elsewhere,

for (i,5) €K, j=1,

M=\ WiMpii, for (i,5) €K, j=2,

0 elsewhere.

Define the matrix B=(§;;) by b;;=m;;d;;(i,i=1,2,+-). Note that 4;;=0 for
each (7, /) €K and 0<|b;;| < |d;j| Sa;; for each (7,5)€K. We see easily
that by =dy=ay (k=1,2,+) and Fbu=t, so that

0<Zelan+bu) =24=1, 2i(an—0b;1)=0.
As in Case 1, we also obtain that
=0 (j=22), Xwbu=0 (iz1).
Thus, A4+B€D,, so that A is not an extreme of D,,.
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COROLLARY 1. ext D, *=9 *.

A nonnegative matrix A= (a;; : i=1,,m, j=1,2,--), where m is a
positive integer, is called an (m, oo)-w.d.s. matrix if 3%, ap=1 (=1,
2,-,m) and 2™_;a;21 (j=1, 2, ) Denote by D, (m, ). the convex set
of (m, co)-w.d.s. matrices. Let P, (m, )= {(2;)) €D, (m, o0) : a;;=0or
1(=1,2,-,m, j=1,2,)}.

PROPOSITION 2. ext D, (m, ) =9, (m, o).

The proof follows from the proofs of Lemmas 1 and 2, together with the

fact that each path in (m, c0)-w.d.s. matrix has a finite length, or yields
a loop.

Let D, *(co, m) and P,*(0, m) denote the convex set of transposes of
matrices in D, (m, ) and the set of transposes of matrices in @, (m, o).

COROLLARY 2. ext Dy*(oo,m) =9, *(c0, m).

REMARK. The foregoing arguments also show that for each A=(q;;) in
D= D~ D, (D, (m, 0) — P, (m, o)), there exists a nonzero matrix B= (b;;)
such that X6,=0 for each i/, Xb;=0 for ezch jeJ,, and A+BeQ,
(D (m, o0)).

THEOREM 2. (Kendall-Kiefer) ext Of =4,

Proof. Since P’ cext @', we shall show that @' — P Q' —ext @’. Note
that @'~ 2= (D' — (D, UD* U D)) U (D UD*—9’) and, by Theorem 1
and Corollary 1, @,UD,*—P' D’ —ext @’. Thus it suffices to show that
D= (D UDFUDN D —ext @'. Let A= (a;)) €D — (Dy U D FUDPN. Let
si=Zwap(iel). Define I,CI(r=0,1,2) by

Iy=1{i: 5;=0}, L=1{:0<s<l}, L={:s=1}.
Let K'= {(i,7) : 0<{a;;<1}. Evidently K’ is non-empty and is the union of
sets KN (I;XJ;) (G,j=1,2).

CaseE 1. KNI XJy) x¢. Select a vertex (p,q) from K'N I XJy), so
that 0<apy<sy t,< 1. Define the positive number & and the nonzero matrix
B=(b;;) by

b=min {as, 1—sp, 1—t;},
byy=b, b;;=0 elsewhere.
Then A+Be@’, so that A is not an extreme of D',
Case 2. K'N (IIXJl) :¢, KN (IQXJl) ¢¢. Define J2: {]EJZ : Z‘,kelza“

=1}. Suppose that J,’=¢. Pick a vertex (m,n) in K’ (LXJ;). Then
there exists p in I such that n#p and 0<la,,<1. If pJ;, then by Lemma
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1(i), the matrix A is not an extreme. If pcJ,, then there exists gl
such that 0<{e,,<{1. Define the positive number & and the matrix B= (4;;)
by

b="0i0{Gpus, By Ggp 1—tw 154,
Omn=bgp=0b, byp=—b, b;;=0 elsewhere.

Then, A+B<@’, so that A is not an extreme.
If Jy’+¢, then define the matrix A’ by

A= (a;j H iEIz, jEI).

We see that A’ is in D,— D, or in D, (m, c©) —P,,(m, o) according as the
set I, is infinite or finite. By Remark, there exists a nonzero matrix B'=
(¥ij:i€l, jeI) such that A’LB'€Q,, and 24,0 ;;=0 for each jeJ, .
Define the matrix B=(4;; : i, j€I) by

b=V Gel, jeI), b;=0 elsewhere.
Then A+BeQ’, so that A is not an extreme of Q.
CASE 3. K'N(IXJy)=¢, or equivalently K’cIXJ,. Define the matrix
A’ by
A= (a;;:i€l, jEJ,).

Then A’eD*—D,* or A’€D,*(c0, m) —D,*(c0, m) according as the set
Jy is infinite or finite. It follows from either Corollary 1 or Corollary 2 that
there exist two distinct matrices B'= (¢, : i€l,j€J;) and C'=(;;: i€l

jiedy) in @,* (or in D,* (oo, m)) such that A’=%(B’+C’). Define w*. d.s.
matrices B=(4;; : 7, j€I) and C={(c;; : i, j€I) by,

bij=b';;(iel, j€Jy), b;j=0 elsewhere,

cij=c'i; (€1, jeJs3),c;;=0 elsewhere.

Since a;;=0 for each (7,7) in IX(JoNJ,), we have that Az-%(B—I-C), B
#C, so that A is not an extreme of Q.

3. Extreme points of <&’ and approximation theorems.

We shall begin this section with the following theorem.
THEOREM 3. ext &/=0,UQ0,*.

Proof. Suppose that A= (a;;) €Q,, so that |A|=(|a;;|) €P,. Then there
exist a unique partition (E;, E;) of the set I of positive integers and an
injection ¢ : I—I such that
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fOI' eaCh iEEls aij=5¢(i')’j (le, 21 '") and

fOI' each /e E2, a;;= _'6ga(i)’j (]21, 2, ‘“).

Assume that A=%(B—}—C), where B=(b;;), C=(c;;) €. For each i€k,

since Zjib,’jlél, Zjlcijl_é_la and
559(;),1:%(5.'1"76:';) (7=1,2, ),

we must have d,,;=b;;=c;; (7=1,2,). Similarly, we also have, for each
i€Ey, —0,4j=bij=cij (7=1,2,++). This shows that A=B=C and Q,C
ext Y.

For each A= (a;;) €Q,*, there exist a partition (Fy, Fp) of the set I and
an injection ¢ : I—1 such that

for each jeF|, 4;;=06,45 (i=1,2,+) and
for each jE F,, a,-j=~5,-,¢(ﬁ (Z:‘—l, 2, "').

We see readily that Acext &’. Thus, Q,UQ,*Cext J'.

It remains to show that J'— (Q, UQ,*) = —ext &’. Note that &'— (Q, U
Qu*) = ('—0") U (@"— (Q,UQ,%)). If A=(a;;) ex’—’, then, by Theorem
2, Aled'—P'=D"—ext @', so that

|4l =25 (B'+C"), where B/,C’'Q) and B'#C'.
Let B’=(#;;) and C'=(c’;;). Then
laijl =5 Witc') 0S8y dyS1, i =12, ).
Define the matrices B= (¢;;) and C=(c;;) by
bij=sgn (a;;)¥'i;, cij=sgn(a;;) ;.
Clearly, B,C=<’, B#C, and A=%(B+C), so that A is not an extreme

of &,
Suppose now that A= (ll,'j) ed — (Qw U Ow*) . Then IA ’ G@’“" (@w U @w*) ]
so that we may assume without loss of generality that

a;;=0 (i=1,2,-) and aq=0 (i=1,2, ).
Define the matrices B=(§;;) and C=(¢;;) by
bn:l, blj:() (.7:2: 3, “')v bi1:0 (1=2, 3,"')a

bi;=a;; elsewhere,
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cll—:—"lacljzc’ (122’3’ "')’ C,‘l:O (i=2a3: "')’
Ci;j=a;; elSCWhere.

It is evident that B,CeqQ’, B+C, and A——-%(B—I—C), so that A is not an

extreme of &. This completes the proof.

We shall state and prove an analogue of Theorem 3 for finite matrices.
Let n denote a positive integer. Let @' (n) and @(») denote the convex set
of nX#n-d.s.s. matrices and the convex set of nXn-d. s.s. matrices. Note that
for each (a;;)) €@’/ (n), (a;;)) €D(n) ff Lau=1 for each i iff Za;=1 for
each j. Denote by 9’(n) the set of those matrices (a;;) in @’(n) such that
;=0 or 1 (4,7=1,2,+-,n). Let P (n) denote tke set of nXz-permutation
matrices. Let o’(n) be the convex set of nXn-(real) matrices (a;;) such
that (la;;|) €D (n) and let S3(n) be the set of those matrices (a;;) in ¥ (n)
such that (la;;|) €D (n). Note that J(n) is not convex. Define ¢’ (n) and
Q(rn) by

& (n)={(a;) € (n) : (la;;|) P’ (n)} and
Q(n) = {(a;)) €I(n) : (a;;]) €P(n)}.
PRrROPOSITION 3. extd () =Q(n), & (n)=chQ(n).

Proof. By using the method of proof of Theorem 3, tcgether with simple
arguments, we see that ext &’(n) =Q(n) and Q' (n) —ch @(n). To prove that
' (n) cch Q(n), it suffices to prove that &’ () Cch ¢/ (n). Fer each A= (q;;)
in & (n), we have (la;;|) €D'(n) and, since &’ (n)=ch Z'(n) [4, Lemma
F],

(la;jl) =Zi=1e:(PE) (0=¢;, ++, 6,21, Xieyer=1;
P;Hed (), t=1,-,1).
Define Q,=(g;/) (¢=1,2,,7) by q;/=sgn(a;))p;#. It follows that Q,e
& (n) (t=1,-,7) and A=37.; ¢, Q,ch @’ (r) “ch Q(n). Evidently ch Q(n) ¢

&’ (n), so that the proof is complete.

Let % denote the Cartesian product of countably infinite copies of the real
line with the Tychonoff topology (the topology of simple convergence), and
let Z be the Cartesian product of countably infinite copies of the interval
[—1,17. It is easy to see that ¥ is a Fréchet space (a complete metric vector
space) in which Z is compact. By means of elementary arguments, we may
verify that &' (<) is a compact convex subset of . On the other hand, it
is straightforward to show that <’ as a subset of [/,] with the /,-w.o0.t. is
compact, and that on <&’, the induced /;-w.o.t. and the induced Tychonff
topology coincide. Thus we obtain the following lemma.
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LEMMA 3. & is @ compact convex subset of U in the lr-w.o.t, or equimi-
lently in the Tychonoff tapology. : "
THEOREM 4. &' =cch(Q: l,-w.o. t.)
Proof. In view of Lemma 3, it is enough to show that for each A= (a;;)
in < and for each positive integer #, there exists B= (§; )ech @ such that
=t (4,j=1,2,+,n). Define A,= (a,j’)ed’(n) by a;/=a; (1,7=1,2,
,n) We have from PrOposltlon 3 that
A= zt=1 g CtBnt(Oé_cla =1, Z{=1=1 N
- Bﬂtea(n)a t=1, ) 7').

Extend each matrix in Q(n) to.a matrix B; in Q. For example, if B,=
(4;//) then we may define B,= (¢,;) by

aij:bip (19121121""7’1)’ bijzoij (i,j=ﬂ+1, n+2, "')s
b;;=0 elsewhere.

Define the matrix B by B=X1_,c,B,. Clearly the matrix B has the desired
property, and the proof is complete.

The converse of the Krein-Milman theorem [1, p. 4407 then shows that
ext 'ccl(Q: [,-w.o.t.), the closure of @ in the I,-w.o.t. We may easily
verify that ¢’ is closed in the /,-w.o.t, and that @’'=cl(@Q: /;-w.0.t.),
so that ext &’<Q’. Thus, Theorem 4, together with the converse of the
Krein-Milman theorem, does not lead to Theorem 3. Since chQ has the
same closure in the weak operator topology and in the strong operator to-
pology for [1,] [1, p.477], we also obtain &’=cch(Q: /,-s.0.t.).

THEOREM 5. So¥Gech(Q: l-s.0.1.).

Proof. It is easy to see that J&,* is not convex snd closed in the /;-s. 0.
t. Let A= (a;;) €3p*. Note that |A|=(la;|) €D,* Since Dy *=cch(P:
I;-s.o.t. [3,p.87, Remark], there exists, for each £>0 and for each posi-
tive integer n, a matrix B=(§;;) €ch P such that 2i;| la;;| —b;;1<e(=1, 2,

«-n). Suppose that B=Xi, ¢; P, €ch®, where P,=(#;/), ¢=1,2,-, r.
ﬁne Qt (Q:J)ea(t'—l 2 ,7’) bY qij —’Sgn(a,,)P.,)(z,J—l, 2, "") and C
=NI,c.Q,. It follows that C=(¢;;) &ch Q and

Sulagy—cpil =2 lag;l —by;1<e (j=1,2, -, n).

This completes the proof.
On the set ¥, we may define a topology induced by e-neighbourhoods of
the form

i

1(6:) : Dalap—byl<le, i=1,2,+,n}.
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As an immediate consequence of Theorem 5, we see that 3, is a closed

(proper) subset of the closed convex hull of @ in the topology mentioned
above.

THEOREM 6. J&cch(Q : ;-s*.0.1.).

Proof. It is easily seen that 3 is a closed set in the [;-s*.0.t. Let A=
(a;) €. Then |Al=(la;;|])ED, so that by a theorem of Rattray and
Peck ([6],03,p.89]) : @=cch(Q : /;-s*o0.t.), there exists, for ¢>0 and for
each positive integer #, a matrix B= (§;;) €ch P such that

Tl laal —bul<le, Zillagjl—bs;l<le(i,j=1,+,n).

By using the method of proof Theorem 5, we can find a matrix C=(c; J) in
ch @ such that

Zilap—cal <le, Zplapj—ci;jl<le(,j=1, -, n).
This completes the proof.
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