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EXTREME POINTS OF CONVEX SETS OF BICONTRACTIONS ON lo.

By C. W. KI~1 AND J. I. UM

1. Introduction.

A linear operator A from I"" into itself with IIAIII ;:;?;l and 11A1l00~1 will
be called a bicontraction on loo. Let d' denote the convex set of bicontrac­
tions on loo. Let <.J)' denote the convex set of positive bicontractions A on
loo (called doubly substochastic operators or matrices), that is, AEd' and
Ax~O for each x (O~xEloo)' Mauldon [5J gave a direct proof to a result
of Kendall and Kiefer [2J that the set of extreme points of infinite doubly
stochastic matrices is the set of infinite permutation matrices. The purpose of
this paper is to give a direct proof to another result of Kendall and Kiefer
[2J on the set of extreme points of <.J) and a characterization of the set of
extreme points of d'.

We assume that 1 ~p;:;?; 00. Let [IpJ dence the vector space of bounded
linear operators from lp into itself. Note that d'c[lIJ n[1""J. Let ej= (aij :
j=1,2,"'), where oij is the Kroneckerdelta. Let <f,g)='£d(i)g(i) (fEll,
gEl",).

Let 'X denote the vector space of infinite real matrices (au) such that sup,
'£jlaijl <00 and supj~ilajjl<00. Then there exists a bijection between [llJ
n[1",J and 'X. For each AE[lIJ n[1""J, if we define the matrix (aij) by
a,j=Aej(i) (=<ej,Aej», where i,j=1,2,"',then

(1) Ax(i) = ~jaijx(j) (xEl"", i=1,2, '''),

(2) IIAlh=supj~;Ia,jl <00, IIAII",,=supj'£j laij I <00.
Conversely, each matrix (aij) in 'X defines a unique operator A in [lIJ n
[looJ satisfying (1) and (2). Thus, we shall identify [llJ n[1""J with 'X
and, in particular, also write

d'= {(ajj) EX: supj,£;Iaijl ;:;?;1, SUPi,!;jI ajj I ;;:;;;1}.

By the Riesz convexity theorem, we have that
[IIJ n[1""Jc n lSpS;"" [lpJ, so that d' may be topologized by the weak

(strong) operator topology for [lpJ. The weak operator topology for [lpJ
will be denoted by the lp-wo O. t. and the strong operator topology for [lpJ
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by the lp-so O. t. Each A= (aij) in [11] n [loo] as an elen:ent of [l1] deter­
mines the adjoint A * in Ct....J which is represented by tl:e transpose (a*i)
of the ma~rix (aij) as

A*x(j) =I,-a*ijx (i) = L,iaijX(i) (xEloo, j= 1,2, ...)

with IIA*lIoo=IIAll1 and IIA*/h=IIAII",. It is easily seen that both [llJn[looJ
and d' are self-adjoint, [/1J n[I""J= ([l1J n[I,,,J) * and d'=d'*. By the
Icstrong* operator topology (the Ics*. o. t.) for [llJ n[/",J, we shall mean
the topology induced by ,,-neighbourhood.;, an c-neighl:ourhood of A= (aij)
in [lIJ n[1",J as the set

{B: 1/(A-B)XiI11<E, II(A*-B*)YiI11<E,i=I,2, ···,n},

where B= (h ij) E [llJ n[looJ ; Xh ••• , Xn, J'h ••• , YnE/h or equivalently

{(bij) : L:"la"j-b"jl<c, L:"laik-bikl<E, (i,j=1,2,···,n)}.

For each doubly substochastic (d. s. s.) matrix A= (aij), AEQ)', we see
that O~aijS:I (i,j=I,2, ...), L,.f4Zkj;:;;;l for each i, and I:,iai,.~l for each i.
Ad. s. s. matrix (aij) is called weakly doubly stochastic (w. d. s.) or weak*
doubly stOchastic (w*. d. s.) according as L:"ai,,=l for each i or L:,a"j=l for
each j. Let Q)w and Q)w* denote the convex set of w. d. s. matrices and the
convex set of w*. d. s. matrices. A d. s. S. matrix (aij) such that L:,aik=l
for each i and L:"a"j=1 for each j is called doubly stochastic (d. s. ). If we
denote by Q) the convex set of d. s. matrices, then Q;=Q'w nQ'w*. ' Define
the sets 9J',5Jw, and 5Jw* as follows:

5J'= {(aij) EQ>' : aij=O or 1 (i,j=I,2, ...)},

tJJw= 5J' nQ)w, 5Jw*=9J' nQ)w*.
Note that each matrix in 5J' has at n:ost one entry 1 in each rew tnd in
each column with remaining entries equal to 0, and that each matrix in 5Jw
(9Jw*) has precisely one entry 1 in each row (column) and at most one en­
try 1 in each column (row) with remaining entries equal to O. Denote by
5J the set of infinite permutation matrices.

For each A= (aij) in [lIJ, the positive operator'lAI : lc-..11 defin~ by

IAlx(i) = sup {I Ay (i) I ,: l.yl ;:;;;x,yEl1},

where 0;:;;;xE/1, i=l, 2, "',
is called· the (Iin~ar) mC?4_ulu~ of ,A. It follows rt:adily that IA I= (I aij I),
IAx(i)fS:IAllxICi) (xE/1, i=1,2,···), 1I1A11l1~IIAllh and IAI*=IA*I.
We seC alsri that 11 IAlllp= IIAllp ;:;;;l (P=l, oo) for each A in d'. Let dlr;'
dw*, ~nd d he subsets of d' that are defined by ,

d",= {AEd' : IAI EQ)w} , d",*= {AEd' : IAI EQ)w*},
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d= IAEd' : IAI EQ)}.

~fine Q',Qw,Qw*, and Q by

Q'= {AEd' : IAI E:P'I, Qw = {AEdw : IAI E:Pwl,

(}w*= {AEd..,*: IAI E:Pw*L ()= {AEd: IAI E:Pl.

For each convex subset (J of d', let ext (J denote the set of extreme
points of e. ·An element A of (J is called an extrerr.e J.:oint (an extrerr.e) of

(} if and only if A= ~ (B+C) and B, CE(} imply A=B=C. Equivalently,

AE ext (J if and only if BEd' and A±BE(J imply B=O. Suppose that d'
is endowed with a topology rand €,cd'. The convex hull of €, is denoted
by ch €, and the closed convex hull of €, in the topology r by cch(€': r).

In section 2, we shall give direct proofs to Theorem 1: ext Q)w=:Pwand
Theorem 2 (KendaII and Kiefer): ext Q)' = Ij)'. In Section 3, we shall prove
(Theorems 3 and 4) that ext d'=(},.,U(}w* and d'=cch (Q : l2··W. o. t.). It
is also shown (Theorems 5 and 6) that d,.,*£;cch(Q : (I-S. o. t.) and d~cch

(Q : l cs. o. t. ) .

2. Extreme points of Q)w.

THEOREM 1. ext Dw=!Pw.
We see readily that !Pwcext Q)w. It is therefore sufficient to show that

Q)w-!P..,cQ)w-ext Q)w· Note that Q)w-qJw= (Q)w-Q)-!pw) U (Q)-!p). It is
known ([2J, [5J) that !p=ext Q), so that Q)-:pcQ)w-ext Q)1I1' Thus it remains
to verify the following proposition.

PROPOSITION 1. Q)w-Q)- !Pwc!Pw- extWw •

Let A= (aij) EQ)w-Q)-!pw' Denote by I the set of positive integers. Let
fj=Zkflkj(jEI). Define JrcI (r=O, 1,2) by

J o= {j : tj=OL J 1= {j : O<fj<ll, J 2= {j : fj=l}.

Note that the sets J o, J b and J 2 constitute a partition of the set I. If J 1

=4J, then J 2 *4J and the matrix A'=(aij: iEI,jEJ2) belongs to Q)-!p, so
that the matrix A is not an extreme of Q)w'

We now assume without loss ofgeneraIity that J I *4J and O<all~fl<l.

We shall follow the terminology of Mauldon .[5]. An ordered pair (i, j),
where i, j E I, is called a vertex of A if aij>O. Note that (1, 1) is a vertex
of A by assumption. A finite collection of distinct vertices of A, {(in jr) :
r=O, 1, ..., m}, is called a path in A (starting at the vertex (1,1» if

( i) io=io=l,
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(ii) either i1=io or h=jo,
(iii) if ir- 1= in then jr-l =1= jr= jr+h and if jr-l = jn then ir- 1=1= ir=ir+1.

Let K denote the union of all paths in A. Note that for each vertex (i, j)
in K, there exists at least one path leading to the vertex U, j). If there
exist two distinct paths leading to the same vertex, there must exist a loop.
By a loop we shall mean a finite collection of distinct vertices {(ir, jr) : r=
0, 1, "', 2n+I} satisfying the conditions (ii) and (iii), together with the
condition

LEMMA 1. Suppose that AEQ)w-Q)-~w and O<all;£tl<I. Then
( i) if there exist two distinct vertices (k, m) and (k, n) of A such that

m, nEJh then A is not an extreme of Q)w;
( ii) if there exists a loop in A, then A is not an extreme of Q)w-

Proof. (i): Define the positive number b and the matrix B= (bij) by

b=min {a..., am" I-t"" I-t,,},

bkm=b, bkn= -b, bij=O elsewhere.

Then A±BEQ)w, so that A is not an extreme of Q)w-
(ii): Let {(ir,jr) :r=0,1,···,2n+l} be a loop 'in A such that io=l=i2R+1

and jo=j2n+1. Define the positive number band B= (bij) by

b=min {aidr : r=O, 1, "', 2n+ 1} .

bidr= (-I)rb (r=O, 1, "', 2n+1), bij=O elsewhere.

Then A±BEQ)w, so that A is not an extreme of Q)w­
For each AEQ)w-Q)-~w with O<all;£tl<I, define

T=m (m=1,2,···)

if and only if there exist qEJ1 withq=l=l and a path {Unjr): r=0,1,···,m}
such that either

(3) m=2n+I{n=0, 1,2, ...), i1=io(=1),

jrEJ2(r=I,···,m-I), jm=q, or

(4) m=2n(n=1, 2, ..•), jl=jo(=l),

jrEJ2(r=2, •••, m-I), j",=q.

Otherwise, let T=oo.

LEMMA 2. Suppose that AEQ)w-Q)-~wand 0<all;£t1<I. If T<oo, then
A is not an extreme of Q)w-
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Proof. For T~2, A is not an extreme of Q}w from Lemma Hi). Sup­
pose that T"ii:; 3. If (3) holds, then the positive number b and the matrix B

= (bij) are defined by

(5) b=min{l-thl-tq,ajrjr (r=O,l,···,m)!,

(6) bjrjr=(-l)rb(r=O,l,"',m), bjj=O elsewhere.

If (4) holds band B= (b j ) are defined by (5) and (6) provided that r=
1,2, .", m. In both cases, A±BEQ}w, so that A is not an extreme of Q}w.

Proof of Proposition 1. Let A= (aij) EQ}w-Q}-qJw with O<au;;;;;tl<l. In
view of preceding lemmas, we shall assume that for each (i, j) E K, tj= 1
whenever j"ii:; 2 and there exists a unique path leading to the vertex (i, j),
and that every path can be indefinitely continued.

The following argument is a modification of Mauldon's argument [5, pp.
334, 335J. For each (i, j) E K with (i, j) ='t: (1, 1), let p (i, j) denote the pen­
ultimate vertex of the unique path leading to the vertex (i, j). Define the
matrix D= (djj) by

raij if ajj ~ ~ ,

I

lau-1 if au>l

(i,j=l, 2, ... ).

For each(i,j) EK with j"ii:;2, let (Jjj denote the sum of the entries of the
matrix D in the row or in the column containing (T, j) and P (i, j). It is
easily seen that (Jjj=O or 1.

CASE 1. i-<t l <l. Define the real number wand the matrix (u'ij) by

w= (tl-I) / ~kdkl,

for (i,j) EK,j=I,

for (i,j) EK,j~2,

elsewhere.

If follows that 0< IWjj I<~1 for each (i, j) E K. Define the matrix (mj)
by
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( W . for (~'~) EK,~=l,

mjj= ) Wjjmp(j,j) for (l,}) EK,J;;;;2,

l 0 elsewhere.

Note that 0< Imij I ;;i; 1 for each (i, j) E K. Define the matrix B= (b jj) by

bjj=mjjaj/i,j=l, 2, ...).

Note that bjj= 0 for each (i, j) ~K and 0< Ibjj I ;;i; Id jj I~ aij for each (i, j)
EK. We have then L:Rbk1=wL:kak1=t1-1<0, so that

O<L:k(akl +b.l:l) =2t1-1<t1<1, L:k(akl-bk1) =1-

We now show that L:kb1k=0. It is easy to see that, since (1,1) =p(I, k) for
(1, k) EK with k;;;;2,

b1k=(-1)u:dlld1klL:j(of.Dd1j for (l,k)EK, A~2, n:dcll=ud,u.
Thus, L:k<;"DbU= -bu . On the other band, l':ll argument of Mauldon
[5, pp. 334,335] shows that

L:Rbjk=0(i~2), L:kbkj=O (j~2).

Thus, A +B E Q)w, so that A is not an extreme of Q)w'

CASE 2. 0<t1;;i;~. Define the matrices (Wjj) and(mjj) by

for (i,j) EK, j=l,

for (i,j) EK, j~2,

elsewhere,

for (i,j) EK, j=l,

for (i,j) EK, j~2,

elsewhere.

Define the matrix B= (bjj) by bjj=mjjdjj(i,j=l, 2, •..). Note that bjj=O for
each (i,j) ~K and. O<lbjjl ~ Idjjl ;;i;ajj for each (i,i) EK. We see easily
that bk1 =dk1 =akl (k=1,2,"') and ~Rbk1=th so that

O<L:k(aH+bk1 ) =2t1~1, ~k(ak1-bl1) =0.

As in Case 1, we also obtain that

L:Abkj=O (j~2), L:Rbjk=O (i~1).

Thus, A±BEQ)w, so that A is not an extreme of Q)w'
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COROLLARY 1. ext Q)w*= '!fJw*.

A nonnegative matrix A= (au : i= 1, "', m, j= 1, 2, "'), where m is a
positive integer, is called an (m, 00) -wo d. s. matrix if 2: 00 k=1 aik= 1 (i = 1,
2, .", m) and 2: mk=1 akj~l (j=1, 2, ... ) Denote by Q)w(m, 00). the convex set
of (m,oo)-w.d.s. matrices. Let '!fJw(m, 00)= {(aij)EQ)w(m, 00): aij=O or
1(i=1,2,···,m, j=1,2,···)}.

PROPOSITION 2. ext Q)w (m, 00) = Cj)w (m, 00).

The proof follows from the proofs of Lemmas 1 and 2, together with the
fact that each path in (m, 00) -wo d. s. matrix has a finite length, or yields
a loop.

Let Q)w*(oo, m) and gJw*(oo, m) denote the convex set of transposes of
matrices in Q)w(m, 00) and the set of transposes of matrices in Cj)w(m, 00).

COROLLARY 2. ext Dw*(oo, m) =1Jw*(=, m).

REMARK. The foregoing arguments also show that for each A = (aij) in
Q)w-Q)-gJw(Q)w(m, 00) -gJw(m, =», there exists a nonzero matrix B= (b i)

such that 2:.<bik=O for each i, 2:.<bkj=O for e2ch jEJ2, and A±BEQ)w
(Q)w(m, 00».

THEOREM 2. (Kendall-Kiefer) ext Q)'=gy.

Proof. Since Cj)'cext Q/, we shall show that Q)'-gJ'cQ)'-ext Q)'. Note
that Q)' - '!fJ' = (9Y - (Q)w UQ)w*UgJ'» U (QJw UQ)w* - tj)') and, by Theorem 1
and Corollary 1, QJwUQ)w*-gJ'cQ)'-ext Q)'. Thus it suffices to show that
<;j)' - (Q)w UQ)w* UgJ') c QJ' -ext Q)'. Let A = (au) E Q)' - (Q)w U Q)w*U tj)'). Let
Si=Xkaik (iE I) . Define Irc1(r=O, 1,2) by

10= {i : si=OI, 11= {i : 0<si<11, 12 = {i : S;= 1].

Let K'= {(i,j) : O<aij<l}. EVidently K' is non-empty and is the union of
sets K' n (I; X J j ) (i, j=1,2).

CASE 1. K' n (I1XJ1) ~c/>. Select a vertex (p, q) from K' n (I1XJ1) , so
that o<apq<sp, tq<1. Define the positive number b and the nonzero matrix
B= (bi) by

b=min {apq, l-sp, 1-tq},

bpq=b, bij=O elsewhere.

Then A +B E QY, so that A is not an extreme of QY.

CASE 2. K' n (f1XJ1) =c/>, K' n (I2XJl) *9. Define J2= {jEJz : 2:kE12akj
= I}. Suppose that Jz' =1J. Pick a vertex (m, n) in K' n (IZXJl ). Then
there exists p in I such that n*p and O<amp<1. If pEJl , then by Lemma
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l(i), the matrix A is not an extreme. If pEJ2, then there exists qE11

such that O<aqp<l. Define the positive number b and the matrix B= (b;j)
by

b=min {am,,, amp, aqp, 1-t", 1-sq},

b",,,=bqp=b, b".p= -b, b;j=O elsewhere.

Then, A±BEQ)', so that A is not an extreme.
If J l =1= rp, then define the matrix A' by

A'= (a;j : iE12,jEI).

We see that A' is in Q)w-5Yw or in Q)w(m, (0) -5Yw(m, (0) according as the
set 12 is infinite or finite. By Remark, there exists a nonzero matrix B'=
(b';j: iE12, jE1) such that A'±B'EQ)w and !;hI2b';j=O for each jEJl.
Define the matrix B= (b;j : i, jEI) by

b;j=b'ij (iE12, jE1), b;j=O elsewhere.

Then A±BEQ)', so that A is not an extreme of Q)'.

CASE 3. K' n (IXJ1) = rp, or equivalently K'cIXJ2• Define the matrix
A' by

A'= (a;j : iEI, jEJ2).

Then A'EQ)w*-5Yw* or A'EQ)w*(OO, m)-5Yw*(oo,m) according as the set
J 2 is infinite or finite. It follows from either Corollary 1 or Corollary 2 that
there exist two distinct matrices B'= (b'/j : iEI,jEJ2) and C'= (c';j : iEI,

jEJ2) in Q)w* (or in Q)w*(oo, m» such that A'= ~ (B'+C'). Define w*. d. s.

matrices B= (b;j : i,jEI) and C= (cij : i,jEI) by,

b;j=b';j (iE I, jEJ2), b;j=O elsewhere,

Cjj=c'ij (iEI, jEJ2),Cij=O elsewhere.

Since a;j=O for each (i,j) in IX (JonJ 1), we have that A=-~(B+C), B

=l=C, so that A is not an extreme of Q)'.

3. Extreme points of d' and approximation theorems.

We shall begin this section with the following theorem.
THEOREM 3. ext d'=QwUQw*'
Proof. Suppose that A= (a;j) EQw, so that IAI = (Ia;jl) Eq)'w' Then there

exist a unique partition (Eh E 2) of the set I of positive integers and an
injection 'P : I-I such that
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for each iEEl! a;j=o<p(j),j (j=l, 2, ) and

for each iE E 2, aij= -orpCi),j (j= 1,2, ).

89

Assume that A= ~ (B+C), where B= (bij) , C= (c,) Eel'. For each iEEr.

since I;jlbijl ~1, I;j 1cij I~1, and

0<pc;J,j= ~ (bij+Cij) (j=1, 2, •.• ),

we must have orpci),j=bij=Cij (j=1, 2, ... ). Similarly, we also have, for each
iEE2, -iJ<pCi),j=bij=Cij U=1,2,·"). This shows that A=B=C and Owc
ext el'.

For each A= (aij) EOw*, there exist a partition (Fr. F2) of the set / and
an injection 9 : /-->1 such that

for each J"EF1, a--=iJ- 'CO) (i=1 2 ... ) andI) z'9 J ' ,

for each jEF2, aij=-oi,<jJC;) U=1,2, ... ).

We see readily that AEext el'. Thus, QwU Qw*cext el'.
It remains to show that el' - (Qw UQw*) cel' -ext el'. Note that el' - (Qw U

Ow*) = (el'-Q') U (0' - (QwU Qw*». If A= (a,) Eel' -Q', then, by Theorem
2, IA I EQ)' -:P' =Q)' -ext Q)', so that

IA 1= ~ (B' +C'), where B', C'EQ)' and B' *,C'.

Let B' = (b'ij) and C' = (C'ij). Then

laij 1= ~ (b'ij+C'j) (O~b'ij, C'ij~l, i, j=l, 2, ... ).

Define the matrices B= (b,) and C= (c,) by

b- -=sgn (a ..)b' -- c- -=sgn (a") c' ..
'J 'J 'J' 'J 'J 'J"

Clearly, B, CEel', B=t-C, and A= ~ (B+C), so that A is not an extreme

of el'.
Suppose now that A = (aij) E Q' - (QwUQw*). Then IA I E:P' - (tj)w U:Pw*),

so that we may assume without loss of generality that

alj=O (j=1,2,···) and ail=O U=1,2,···).

Define the matrices B= (bij) and C= (cij) by

bll=l, blj=O (j=2, 3, ...), bi1=O U=2, 3, ... ),

bij=aij elsewhere,
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cn=-l'Clj=O (j=2,3,···), Cil=O (i=2,3,···),

Cij=aij elsewhere.

It is evident that B, CEG', B::f:C, and A= ~ (B+C), so that A is not an

extreme of S'. This completes the proof.
We shall state and prove an analogue of Theorem 3 for finite matrices.

Let n denote a positive integer. Let Q)'(n) and Wen) denote the convex set
of nXn-d. s. s. matrices and the convex set of nXn-d. s. s. matrices. Note that
for each (aij) EQ)'(n), (aij) EQ)(n) iff L;kajk=l for each i iff L;kakj=l for
each j. Denote by gJ' (n) the set of those matrices (ajj) in Q;' (n) such that
aij=O or 1 (i,j=l, 2, "', n). Let:p (n) denote tbe Eet of nXn-permutation
matrices. Let d' (n) be the convex set of nX n- (real) n:atrices (aij) such
that (Iaijl) EQ)'(n) and let den) be the set of those matrices (aij) in d'(n)
such that (/aijl) EQ)(n). Note that den) is not convex. Define G'(n) and
O(n) by

0' (n) = {(aij) Ed' (n) : Claij I) E!P' (n)} and

O(n) = {(aij) Ed(n) : (Iajjl) EgJ(n)}.

PROPOSITION 3. extd'(n)=Q(n), d'Cn)=chQCn).

Proof. By using the method of proof of Theorem 3, together with simple
arguments, we see that ext d'(n)=Q(n) and Q'(n)cchG(n). To prove that
d'(n)cch G(n), it suffices to prove that d'(n)cch Q'(n). For each A= (ajj)
in d'(n), we have (/aijI)EW'(n) and, since Q)'(n)=ch tJ'(n) [4, Lemma
F],

(Iaijl) = L;~=lCtCP~j) CO~Ch "', cr~l, L;~=lCt=l;

(Pj /) EgJ' (n), t=l, "', r).

Define Qt= (q;/) (t=l, 2, "', r) by q;/=sgn(ajj)pi/. It follows that QtE

0' (n) (t=l, "', r) and A= L;r=l CtQtEch 0' (n) cch Q(n). Evidently ch O(n) c

d' (n), so that the proof is complete.
Let 11 denote the Cartesian product of countably infinite copies of the real

line with the Tychonoff topology (the topology of simple convergence), and
let 'll. be the Cartesian product of countably infinite copies of the interval
[ -1, 1J. It is easy to see that 11 is a Frechet space (a complete metric vector
space) in which q is compact. By means of elementary arguments, we may
verify that d' (cq) is a compact convex subset of {jJ. On the other hand, it
is straightforward to show that d' as a subset of [l2J with the l2-W. 0.1. is
compact, and that on d'. the induced l2-W. o. 1. and the induced Tychonff
topology coincide. Thus we obtain the following lemma.
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LEMMA 3. d' is a compact. convex subset' of 11 in the li-w. o. t., or equiva­
.lently in the Tychonoff topology.

THEOREM 4. d'=cch(O: l2-W. 0.1.)

Proof. In view of Lemma 3, it is enough to show that for each A= (a,j)
in d' and for ,each positive inte~rn, there exists B= (b,j) Ech q such that
a,j=cij (i,j=1,2,···,n). Define A,,=(a;/)Ec;!'(n); by~,/=aij (i,j=1,2,
:"', n) . We have from Proposition 3 that '

A,,= 2:r "'ctB"t(O~ch "', 'cr~l, I;r~1=1 ;t-l .
. . B"tEQ(n), t=1, "', r).

Extend each matrix in O(n) toa matrix B, in O. For example, if B n,--:.

(b;/) then we may define B,= (b,j) by

aij=b,/(i,j=1,2,"',n), b,j=o,j (i,j=n+l, n+2,···),

bij=O elsewhere.

Define the matrix B by B= :Er~lctBt. Clearly the matrix B has the desired

property, and the proof is complete.
The converse of the Krein-Milman theorem [1, p. 440J then shows that

ext d'ccl(O : l2-W. o. t.), the closure of a in the l2-W. o. t. We may easily
verify that Cl is closed in the l2-W.O.t., and that O'=cI(a: l2-W.O.t.),
so that ext d'ca'. Thus, Theorem 4, together with the converse of the
Krein-Milman theorem, does not lead to Theorem 3. Since chO has the
same closure in the weak operator topology and in the strong operator to­
pology for [l2J [I, p.477J, we also obtain d'=cch (a : l2-S. o. 1. ).

THEOREM 5. d w*I; cch (0 : les. o. t. ).

Proof. It is easy to see that d..,* is not convex lind closed in the les. o.
t. Let A= (au) Ed..*. Note that IAI = (!aijl) EQ>..,*. Since Q>w*=cch(g.>:
les. o. t. [3, p. 87, RemarkJ, there exists, for each £>0 and for each posi­
tive integer n, a matrix B= (b,j) Ech g.> such that EAI takjl-hAjl<E(j=1, 2,

.··n). Suppose that B= !:r=1 Ct Pt Echg.>, where Pt= (P;/), t=1,2, '.', r.

Define Q,= (qi/) EO(t= 1,2, .", r) by qi/=sgn (a,j) P;/) (i, j= 1,2, ...) and C

= :Er-lCtQ,. It follows that C= (Cij) Ech 0 and

I:klakj-ckjl =l'kllakjl-bkjl<E (j=1,2, "', n).

This completes the proof.
On the set cr, we may define a topology induced by c-neighbourhoods of

the form
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As an immediate consequence of Theorem 5. we see that d w is a closed
(proper) subset of the closed convex hull of Q in the topology mentioned
above.

THEOREM 6. d~cch(Q: 11-8*.0.t.).

Proof. It is easily seen that d is a closed set in the lcs*. o. t. Let A=
(a;i) Ed. Then IAI == (/a;il) EQ). so that by a theorem of Rattray and
Peck ([6J. [3. p. 89J) : Q)=cch (a : Ic 8*o. t.), there exists. for e>O and for
each positive integer n, a matrix B= (b;i) Ech qJ such that

.Ekllaikl-b;kl <e. Ekllaki/-bkil<e(i.j=l• .••• n).

By using the method of proof Theorem 5, we can find a matrix C= (Cji) in
ch Q such that

Zklajk-Cikl <e. Eklaki-ckil <e(i.j=l• ••.• n).

This completes the proof.
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