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ON THE RICCI TENSORS OF PARTICULAR FINSLER SPACES

By HipEO SHIMADA

In the present paper we shall study various Ricei tensors in particular
Finsler spaces. The problem of the Ricci tensors of Finsler spaces is stated,
for example, in the paper [15]* 82 and will be important in applications
of Finsler geometry to the theoretical physics. One of the difficulties of the
problem is that the Ricci tensors defined from the h-curvature tensor Ryjp
and hv-curvature tensor Pj;; are not symmetric in general, contrary to the
case of Riemannian geometry. This studies was promoted by Professor Y.
Takano’s report [25], continuing [15] §2.

In §1 two kinds of the hv-Ricci tensors, denoted by P;;¥ and P;;?,
and the h-Ricci tensor R;; are introduced. The purpcse of the next section
is to consider the Bianchi identities znd to prcduce varicus identities related
to the Ricci tensors. The so-called conservation law is important in the
physics. We find a tensor field which satisfies the law under socme assump-
tion (Theorem 1). The third section is devoted to studying the Ricci ten-
sors of a C-reducible Finsler space, which is defined by Prof. M. Matsumo-
to [7] and will be important in the physics. In §4 we shall touch upon
isotropic Finsler spaces due to H. Akbar-Zadeh [1]. We shall treat, in §5,
Finsler spaces of scalar curvature owing to L. Berwald [2]. It is shown
that in such a space the A-Ricci tensor R;; is symmetric and the condition
R;;j=uvg;; yields “of constant curvature” (Theorem 10). Furthermore we pay
attension to Finsler spaces of scalar curvature which satisfy the C-reducibi-
lity. The final section is a list of various known results of the w»-curvature
tensor Sy, and v-Ricci tensor S;;.

The author wishes to express here his sincere gratitude to Prof. Dr. M.
Matsumoto, who not only suggested valuable improvement in the present
paper, but also whose advices and criticisms during my stay at Kyoto Uni-
versity from Sept. 1976 to Fed. 1977 were of inestimable benefit.

§1. The hAv-and h-Ricci tensors.

Let F» be an n-dimensional Finsler space with the fundamental function
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L(z,y), (y=1). We denote by g;;(z,y)=(c2L?/0y'dy?) /2 the fundamental
tensor. The angular metric tensor &;; is given as h;;=g;;—/{; where [;=
oL/oy is the normalized element of support. Hereafter the terminologies and
notations are the same as in the monograph [12].

The hv-curvature tensor P53 (cf. (2.3)) satisfies the four identities ([12]
8§17):

(1.1 Pyijp=—Pujp,
1.2) Phior=Prite=0,
(1.3) Ship {Prijad =0,
1.4 S ainy Priju} =0,

where Sy, means cyclic permutation of indices h,7,j and summation and
the index o means contraction by the element of support ¥

By virtue of (1.1), (1.3) and (1.4) the number N of the independent
components of the hv-curvature tensor Py, is given in the formula

N=n?(n—1) (n+4)/6.

From this we have, for example, N=4 (n=2), N=21 (»=3), N=64 (n=
4) and so on.

Next we define the hv-Ricci tensors from the hv-curvature tensor Pj;j;; in
the following forms:

PP =Pg,, P;;®=Pg,

where P,:‘,j'—:g'”’P,-mj and P;‘j,=g”‘P;,,j,.

As a matter of course P;;¥#P;® in general, but we can see that the
skew-symmetric parts of P;;¥ and P;;¥ are equal to each other, which was
suggested by Prof. M. Matsumoto.

PROPOSITION 1. The skew-symmetric parts of the two hv-Ricci tensors P;;V
and P;;® are equal:

P®—P;O=P, PP, @=P,s,
where P;j=g"P;;m;
Proof. Multiplying (1.3) by g™ and summing over = and % we have
Py @ —Py@=Pym,.
Similarly from (1.4) we get
Py® =Py P =Py,
Consequently we have proved the identities as above.

REMARK 1. A Finsler space with Py;;=Pya; is called P-symmetric ([13],
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[15]). If a Finsler space is P-symmetric, we have the unique hv-Ricci ten-
sor P;;=P;P=P;®; this is a very convenient fact, but, contrary to our
expectation, the scalar curvature P=P;;g’/ necessarily vanishes in this case

([15182).

REMARK 2. A Finsler space with the Cartan connecton C/” is P-symme-
tric, if and only if the v-curvature tensor S, satisfies the equation ([12]
(17.25), [15] Prop. 2)

Shije1 =0
where () denotes the h-covariant differentiation with respect to CI.

We turn the consideration to the h-curvature tensor R,;; which is given
in the form

(1.5) Ry jp= A (0F i j=+ Fa" ;F 5 +C R,

where A, means interchange of indices j, # and subtraction and G,=0;—
Njkaj.

If we adopt the Cartan connection C7" as the Finsler connection, the fol-
lowing identities hold ([127 (17.9), (17.10). (22.7), (22.8)):

(1.6) Ruijpe=—Ripjts Rpiji= — Rhirj»
(1.7) Seijp iRpij) = —Sujp lCh iR
(1. 8) R jini= Ruiji~ Nhi jis

where Nj;jp=AGpCT jRme— Ci iRt} -

REMARK 3. In a Finsler space of scalar curvature, the A-curvature tensor
Ry satisfies S¢;jp {Rpiji) =0 and Rjuy; = Rpijr as Riemannian curvature ten-

sor. See §5.

We define the h-Ricci tensor R;; from the h-curvature tensor R in the
form

Rij=Rjs

The h-Ricci tensor R;; is also equal to R;; because of Ry;jp= Ripj
In case of the Cartan connection CI it is observed that

PROPOSITION 2. The skew-symmetric part of the h-Ricci tensor Ry, is given
by the equation

(1.9 Ry~ Ru=CiRipp~Cpi R —Cy Ry, (Ci=C"n).
Proof. From (1.5) we obtain easily

Rip— Rpy= 0 Fy i — OpF ¢t i+ Chl Ry — Ci' R7 i,
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where Fii;=7r4;—C;Niy=2o,log vg ([12] (17.3)"). Applying &, to the above,
we get

OrFyfi— O Fi=CiRiy,
Thus the. proof is completed.

It is noted that the contraction of (1.7) by g/ yields immediately another
proof of (1.9).

§2. The Bianchi identities and Ricci tensors.

In the theory of general Finsler connections, devoted in the monograph
[127, we have four Jacobi identites in combination with two vector fields,
called the A-and »-basic vector fields. From each Jacobi identity, we obtain
three identities, which show the vanishing of the Ah-horizontal part, v-hori-
zontal part and vertical part of the Jacobi identity. Hence there are twelve
identities. Because one of these identities is trivial, we have finally eleven
Bianchi identities which are classified into four groups ([127]8§11).

We are specially concerned with the Cartan connection CI. The four gr-
oups of the Bianchi identities of C/” are as follows ([127817):

The first group

(BC-I-1) Sijp [CAR 3p— R4 =0,
(BC-I-2) Seip 1P* R 3+ Ry ) =0,
(BC-1-3) Sijp AP wtir R g+ RuPij1 3} =0.
The second group
(BC—II—I) A (Cl i+CHAP 3 — Py} =0,

(BC-1I-2) Riila— Rt Ap (R, C PP - Phy i} =0,
(BC-II-3)  RutijlatSnterR7ij+ Aup R C et Pk P i+ Pt a1 i} =0,
where (]) denotes the v-covariant differentiation with respect to CrI.
The third group
(BC-1II-1) Ap{C;1i—CHCy} —S# =0,
(BC-III-2) Aap PP Cyry— Pl i+ Pyt =0,
(BC-II-8)  SphijiatAp PulniC j— SulirPraj— Pyl =0.
The fourth group
(BC-IV-1) Sam 1St =0,
(BC-1V-2) Sujp 1Sahi;1a =0.
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It is remarked that (BC-I-2), (BC-II-2) and (BC-III-2) is a consequence
of (BC-1-3), (BC-II-3) and (BC-III-3) respectively.

From (BC-I-1), contracting for 2 and ; we have (1.9) because (BC-I-1)
is quite the same with (1.7).

The contraction of (1.9) by 3* yields

2.1) Rpo—Rop=CiRipo+Ci,R",;.

By virtue of the metrical property of the Cartan connection CI°, a contr-
action and A-(or v-) covariant differentiation are commutative.
Next we contract (BC-I-3) for 2 and 7 to obtain

(2 2) Rmk I i—'Rmi | Iz—Pmr(l)Rrki: Rmhki tat thirRrhk—thkrRrhi-
In Riemannian geometry (2.2) yields the important equation R,;=2R";|, by

contracting by g™t ([22] p.18).
Contracting (2.2) by y™ and ymy*, we have respectively

2.2)’ Ropii—Roits— Por P Rpy=Rpi i, + P R — P, R'
2.2 Rooii—Roi o= Por™V R7oi= Rl oi 1 r+ P4 R,
Next the Bianchi identity (BC-1I-1) is, by virtue of (1.1) and (1.3),
rewritten as
(2.3) Priit=Cijp h—Cpjp i Pitr Cin—Pue,C s,
which is nothing but the well-known representation of the hc-curvature ten-

sor P of the Cartan connection CI' ([12] (17.23)).
From (2.3) the hv-Ricci tensors Pyt and Pp® are written as follows:

2.4 PV =Chipn—Cie s T P, Cip—PiiCrs (P, =g Piur) -
Pu® = Cria—=CrristCaCr o= PitCi s

Consequently it is easily observed that

PROPOSITION 3. The hv-Ricci tensors Pyt and Pp® of the Cartan connec-
tion CI' satisfy the following equations:

(D PP =Py®=Crip Ppo=Pp>=0,
2) PV =PV =Pp® —Pu® = A (Crra+ P, Cat
(3) PV —Pp@ =Py, Copt Py .Co— PpiCr—CiiCr i

REMARK 4. According to Remark 1 the P-symmetry implies that the right
hand side of (3) in Proposition 3 vanishes but the inverse does not hold.
Further the Av-Ricci tensor P;; is not symmetric even if P-symmetry holds
good.
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From (BC-II-3) we take the contraction for 2 and j to get
(2.5) Rypli+ Ry Cyit- PP 13— Py Y Pry;
=Pruitr— ReuwCi— Pro P+ SFa R g
Contracting (2.5) by »¥ and s’y%, in view of P, ¥ =C;,, we get respectively

2.5)’ Rop|i— Rig+ Ry Cyi+Cii014— P 1iCr 1
=Pyt — R Cli— P P,
(2.5)" Rooli+Cito10=Roi+Riy— R,/ CJ';
=2Roi+C,R";.

In the last equation we refered to (2.1).
In (BC-II-3), we take another contraction for & and i to get
(2.6) Py 43— Pu® ) ;-8R =R 3|+ Ap 1R ;:C o+ Prj Prid

where S, is the v-Ricci tensor S;,= Si™,
Contract (2.6) by » and y'y*. Paying attention to »'|;=0 and | ;=¢%;, in
virtue of (1) of Prop. 3 we get

(2.6)’ Ciiot2—Crio1 /=R 3|, +R*;;Cs*,— R}, C
2.6)” leola:Rrjalr‘“Roj—Rsoerrs-

We compare (2.6)" with (2.5)”” : Eliminating the term C;,,|, from them
we obtain

@7 Rooli+R¥ | 4~ 2Rpi— Rip=0.
In Riemannian geometry (2.7) reduces to a trivial equation.

Next from (BC-III-2), in virtue of (1.1) and (1.4) another expression of
the hv~-curvature tensor Py, ; is obtained ([12](17.27)):

2.8 Puip=Pip|ps—Prjplit+ P, Cia— PuCj s

The contraction of (2.8) by g'/ and gé yields respectively

@.4)" PP =Chiols— Pl s+ P,Co— PiaC,,
Pu®=Cy,11— Pyl A+ C¥3Cr10— Py Ciy.

This is another representation of (2.4). We make a comparison with (2.4)’
and (2.4) to get the following interesting equation:

2.9 Cilalj"ci!j=P£'j|r"Cirilr'

Hence we conclude
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PROPOSITION 4. In a Finsler space F* with the Cartan connection, the ten-
sor
Ciioli—Ciij
is written as (2.9) and symmetric in 7/ and j.

From (2.4)’ it is observed that the equation (2) of Proposition 3 is wri-
tten in the form
PP —PuP=Pu®—Pu®=Aun (Criolh+ PG} -

Now we are concerned with (BC-III-3). The contraction for & and k yie-

lds
(2' 10) ij(l) [i—Pmi(l) |j: mrijlr+A(ij) {Pmsricxrj+smxriprsj} ’

which corresponds to the equation (2.6). The contraction of (2.10) by y»
gives
(2.10)’ Citoli=Cii,| j=Pij ¥ =P P+ P,Co j— P Cli
Substituting from (2) of Prop. 3 into the above, we get an interesting
equation
(2.1 Ciioli—Ciiol;=C;;—C
It is, however, remarked that (2.10)" is solely a consequence of Proposi-
tion 4.

In (BC-III-3), we take another contraction for 2 and ;j to obtain
(2.11) Puk® i+ P oy CFi— Smit 4+ S P

=Pmrki ! r+PmsriCkrs_SmsirPrks'

il

Lastly we are concerned with the Bianchi identities of the fourth group
(BC-IV-1,2). From (BC-III-1), as C.jl;=Chil; in the Cartan connection
cr, it follows that

Spijp=Ap {CH1Crijh,

which is nothing but the well-known representation of the v-curvature ten-

sor Sy;jx of the Cartan connection CI' ([12](17.20), See 86). Substituting

the above into (BC-IV-1,2), these are automatically satisfied ([127] §7).
Here we shall return to (2.2)’". Because of P,,V=C,y,, if we put

(2 12) Z,':P‘,'rRrw—Rr,‘gCr i o9
then (2.2)’”’ is written in the form
R, 1i— Ry o R =2

so that we conclude
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THEOREM 1. In a Finsler space with Z;=0 the tensor Bi= Rk, R,0i—
Ryt satisfies the conservation law® Bk; ,=0.

Revark 5. Although the assumption Z;=0 seems not to be natural, this
is identically satisfied in a Finsler space of scalar curvature, as will be pro-
ved in §5 Th.12. In a Riemannian space the above conservation law B#;;
=0 is a consequence of Ry jzi,=R;;is—Ri) j»

Next we shall be concerned with the conservation law with respect to the
v-covariant differentiation. (See 86 as to the v-curvature tensor Sy;;). The
equation (2.7) is notable in this point of view. Suppose that 2R,;+ R;,=0.
Then we get R,,=0 and (2.7) reduces to R*;,|,=0. Consequently

THEOREM 2. In a Finsler space with B;=2R,+R;,=0 the contracted (v)
h-torsion tensor R*,, satisfies the conmservation law RF;,|;,=0.

REMARK 6. In a Finsler space of scalar curvature we have R,;=R;, (See
85 Th. 9(3)). Hence the tensor B; in Theorem 2 is written in the form

B;=3R;,= (n—2) L2K;+3(n—1)KLL;.

Contracting the above by » we get B,=3(n—1)KL2. Consequently B;=0is
equivalent to K=0 and Theorem 2 is trivial.

Consider the above condition B;=0. It follows from (2.1) that the cont-
racted Ricci tensors R,; and R;, are expressible in

. 13) Ryi=—R;/2=— (Rrio+CiSrRros) /3, (Rrio= CmRmio) .
From the above result and (2.6)”” we have

COROLLARY. In a Finsler space, where the contracted Ricci temsors R,; and
Rj, are written in the form (2.13), the contracted (v)h-torsion temnsor RY,
satisfies the conservation law RY;,|,=0 and C;\,\, is written in the form

Ci lole™ (Rria‘ZCi‘rer) /3-

83. C-reducible Finsler spaces and Ricci tensors.

In the present section we are concerned with C-reducible Finsler spaces.
Because, for instance, the Randers space (See §6), which is important in
the theoretical physics, is certainly C-reducible ([127 836, [19], [271).

DEFINITION. A non-Riemannian Finsler space F* (n>3) is called C-redu-
cible ([7]), if the hv-torsion tensor .C;;; is written in the form

3.1) Cipp= (Cihjp+C by +Cihij) [ (n+1).
It is well known that the v-curvature tensor i, the (v)hv-torsion tensor

2) See [12] §26, [18].
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P;; and the hv-curvature tensor P of F* are respectively written in the
following concrete form ([12] §30):

(3.2) Sime=Aup haCipthjpCul [ (n+1)2,
(8.3) P jp=Gihjp+G jhyi+Gihyj,
3.4) Piin= Npihjit Ao (b N + b Njp @},

where k;; is the angular metric tensor and
Cij=Chyj/2+C,Cj (C?=C,LH, Gi=Cy1of (n+1),
N;;V=(C; ;—C,Gj—phi;/2) [ (n+1), (u=CG)),
N;j®=(C;) ;+C;Gi+ phi;/2) [ (n+1),
N;j= '"‘Nij(l) +Nji(1) = _Nz_j(z) +Nji(2)-

REMARK 7. From (8.3) it is observed that the C-reducible Finsler space
is P-reducible ([13]). The converse does not hold good in general. Recen-
tly C.Shibata has showed ([21]) that in case of a Finsler space of scalar
curvature the converse is correct.

From (3.4) the hv-Ricci tensors Py and Py, are especially written as
follows:

Phk(l) = {anI ;,—Ch\r,LL‘l (ﬂ+ 1) (leh+Ghlk) “\LZC},G],
— (n—=1)CiGr—ehp} | (n+1), (e=Cry+(m—1)p),
Py® = {nCyi3—Cp1p+ L7 (n+1) (Galp+ Galp) —2C4Gh
+ (r—1)CiGr— (e—2(n—1) 1) hpa} / (n+1).
From (3.5) the hv-scalar curvatures PY (=P Pgh®) and PP (=P,®
g"t) are written in the form
(3.6) PW=—PD =~ (n—2) p.

Suppose that P =0, i.e., u=CiG;=0. As P;3=C;jz1, it is remarked
that G;=P;/(n+1), where P;=Pm,.
Hence we have

(3.5)

THEOREM 3. In a C-reducible Finsler space the hv-scalar curvature P®
(or P®) vanishes if and only if the vector P; (=Pm,) is orthogonal to the
torsion vector C; (—=Cm,).

If we put A;=LC; and A%2=A;Ai (Ai=girA,), it is easily seen that
p=CrCrrof (14 1) = (1/2) LA of (a1

Consequently we have
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COROLLARY. In a C-reducible Finsler space with constant A2(=A A’) the
ho-scalar curvatures PV and P® vpanish. :

REMARK 8. This suggests us that the Av-curvature tensor P,;; will play
an important role in the investigation of Finsler spaces with constant AZ
Pay attension to the well-known equation A;= Ld;(log+y/g) and Deicke’s the-
orem [4].

From (3. 4) and (3.5) we obtain

D — Py =Pp® —Pu® = (n41) Njy=Aap {Cr15+CiGa} »
(3 7) Ma(l)zNio(Z)zGi’ Noi(1)=Noi(2)=O’
N;y=—Ny=—G;.

THEOREM 4. If the hv-Ricci tensor P;jV (or P;;?) of a C-reducible Fin-

sler space is symmetric, then the Finsler space is a Berwald stace.

" Proof. If the tensor P;;¥ (or P;;®) is symmetric, from (3.7) we have
N;j=0 and N;,=0. Consequently from (3.7) G;=C; ,/(n+1)=0. Hence
from Lemma® it is concluded that the Finsler space is a Berwald space.

PROPOSITION 5. If the symmetric part Pgp (or Pup®) of the hv-Ricci
tensor is written in the form

3.8 Pun® (or Pun®) =kt Aogn

as a linear combination of the angular metric tensor hy; and the fundamental
tensor gy with the scalar coefficients 2y, 3, then C; ,=0 holds necessarily.

Proof. Suppose that Puu® = ky+Asgu. The contraction of this by »*
yields
P 4oy™® =22y
Contracting the above by y*, we have 1,=0 and Pu,®P=0. Thus (1) of
Proposition 3 gives C;,=0.
Consequently from Lemma quated above and Proposition 5, it is concluded
that

THEOREM 5. If, in a C-reducible Finsler space, the symmetric part Pgp
(or Pup®) of the hv-Ricei tensor is written as (3.8), then the Finsler space
is @ Berwald space.

COROLLARY. A C-reducible Finsler space is a Berwald space if one of the
Jollowing conditions holds good:

3) See [14]; [12] Th.30.4: If a C-reducible Finsler space is a Landsberg space, then it is a
Berwald space. ) '
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oy Pap'? (or Pup®) is proportional to hy.
(2) Pyt (or Pup®) is troportional to g
(3) Pun®? (or Puyp®) vanishes.

REMARK 9. In a 2-dimensional Finsler space the hv-torsion tensor C;j is
always written as (3.1) and

Pij(w :Pij(Z) (:Pij) , PL=p@=
hold because of P-symmetry ([127] §28). See Remark 1.

THEOREM 6. If the hv-Ricci tensor P,; is symmetric in a 2-dimensional
Finsler space F2, then F? is a Landsberg space®.

Proof. The hv-curvature tensor Py, of F2? is always written in the form
Phije=o (Uym;—Limy) mmy,

where (I;, m;) is the Berwald frame ([127] §28). The two unit vectors /;
and m; are orthogonal to each other. Contracting the above equation by gi
we have Pu=0lym;. The hu-Ricci symmetry yields immediately ¢=0 and
we get Py, =0, which is equivalent to P,;,=0. Then the proof is complete.

Next we shall consider the Bianchi identities of C-reducible Finsler space.
From (3.1) and Sy, {R;;} =0 the equation (1.9) is rewritten as

(1.9C)  Ru—Ru=[(n—2) Rypp—Aup {ChRa+ LR} 1/ (n+1).
The contraction of (1.9C) by y* yields
(2 IC) Rp—Rp= {(71—1)Rrko+CkRoo} /(72‘{" 1)-

From (2.1C) we get the form of R,,;(=—R,;,) in terms of the A-Ricci ten-
sor. Substituting this into (1.9C) we obtain

(1.9C) Rpp—Ru+- _(T—I_ITZ_A ity e (Rho— Ron) }
= W—_]{_T)'_ { (n—2) Rrkh+ CkT},—‘ Cth} ,

where we put
Th=Rop— L7 Ryl4/ (n—1).

Next we reconsider (2.2)’. Using (1) of Prop. 3 and (3.3), it is re-
written in the form

(2.2C)" Rop1i—Roii3=R'iir,+ (n—2)G, Ry — Agiy (L71G, R 3l;+ RGy} .

4) See [12] §25, [6].
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The contraction of (2.2C)’ by y* yields
(2.20)” Roo1i— Rpite=R7pi1,+ (n—1) R",;G,— R,G;.
Next we are concerned with (2.5)’. First from (3.3) we derive
Py 1 =G"1 b+ G147+ Gt i — LGy 1 85 +-Gy L) -

By virtue of the above, (3.1) and (3.3), the equation (2.5) is rewritten,
after long computation, in the form

(2.5C)’ Rot)i+Ci1016=Sun {Gi1a— L7'G; 1 ly+ (n—3) G4G:/2

| ~ (Rt L' Rool) Ci/ (1)} +vhiz+Us,

where S means the interchange of indices 7, % and summation and we put
v=G",+ (#—1){~Ry,/ (n+1), {=G"G,
Uin=Ra— (Rity+ Rypi+ L U;R,00+CiRop) [ (n+1).

It is observed that the right hand side of (2.5C)’ is symmetric except the
term Upy.
The contraction of (2.5C)’ by y* yields

(2 50) " Roo ,i+cif0 { o:Roi"{‘Rio'" (2Rr0i+RoaCi) / (n+ 1)‘
From (2.5C)’ we have

PROPOSITION 6. In a C-reducible Finsler space, if the tensor U;; given by
(3.9) is symmetric, then the tensor

Ryl i+Cji01:

3.9

is symmetric.
REMARK 10. In a Riemannian space the term Uy is, of course, equal to
Ry which is symmetric. Then R,;];+C;,); is nothing but Rj.
ReMARK 11. In an h-isotropic Finsler space F* (See §4), the above Uj;
is written in the form
Ugj=Rij"‘Riji

and R;; is symmetric. Hence, if U;; is symmetric, we get C;=0 provided
R#0. Consequently F* is a Riemannian space from (3.1). In this case U;;
is nothing but the Ricci tensor R;; in the Riemannian space.

REMARK 12. In a Finsler space of scalar curvature K (See §5), it is ob-
served that R;;=Rj; (See §5 Th. 9(3)). And Uj; is written in the form

: 2
Uii=Rij+‘““-“_3 (nI:{~1) (Kyhi;+K)Ci+ Ky jC) —Ci;(L2K) ;/3+Ky,).
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If U;; is symmetric, we have K=(. Conversely, in a space of vanishing
scalar curvature K, U;;(=R;;) is always symmetric.

Contracting Uy in (3.9) by 3 and yt, we get respectively
(3 10) Uok=Rak1 Ulzo=Rka—' (2Rrok+ CkRoo)/(n+1)-

Next we shall consider another condition U,=U;,=0. From (3.10) we
have

(3 11) Roi:Os Ria=2Rroi/ (ﬂ+1)

Here we shall consider the equation (2.6)’’, which is, from (3.1), written
as

(2 GC) 7 leolo=Rrjo|r—Raj+ (2R7jo_Roocj) /(”’+1)-

From (3.11) the equation (2.5C)”’ reduces to C;,1,=0 and (2.6C)"" also
reduces to

(3.12) R jo| r= Rjor

Furthermore we are concerned with more stronger condition U;;=0. In
this case (2.5C)’ is written as follows:

Ci1014=Gi1}+Gri i+ (n—3)GiGit by, (x=G" 1+ (n—1)0).
Hence, by virtue of C;),= (n+1)G;, the above, which also means G; ;=G ;,
is rewritten in the form
Gui={(n—=38)GiG;+#hy;} | (n—1).

Contracting this by g¥# we get {=0. Consegently the above reduces to a li-
ttle simple form

(3.13) G1i= {(n—3)GiG;+Ehy} / (n—1), (6=G",).
If the metric is positive-definite, {=0 implies G;=0.
Thus, making a summary of the results obtained above, we have
THEOREM 7. In a C-reducible Finsler space with Uy=U;,=0 the follow-
ing hold good:
(1) The contracted Ricci tensors R,; and R;, satisfy the equation (3.11),

(2) Ci[olozoa
(3) the contracted (v)h-torsion Rj, satisfies the equation (3.12).

COROLLARY. In a C-reducible Finsler space with U;;=0, the conditions
), (2) and (3) of Theorem 7 hold good and further

(4) the tensor Gy i is symmetric and written as (3.13),
(5) the space is a Berwald space, provided the metric be positive-definite.
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Here we shall recollect the Proposition 4. In virtue of bf|;= — (»—1) L7,
and G;{,=0, it follows from (3.3) that
Py, =G hi;—Sup {”L_lGilj'—Gilj} .
On the other hand from (3.1) we have

Ci51,=Cr bl (n+1) +—GT]*‘_-1—)——S(5;3 {Ciyj— (a+1D) L UGG

Consequently (2.9) is of the form
" Cilol j—Ci1 j=whi;—Sp {(n—1) L7U,G;—G;| j+Ci1 j/ (a4 D},
(0=G"},—Cr\,/(a+1)),
which is rewritten as
(2.90) Citol j—Cirj=(n+1) {whij— L G;+1G)},
(wy=w/(n~1)).
Hence we have

PROPOSITION 4C. In @ C-reducible Finsler space the symmetric tensor C; lol j
~C;1; is given by (2.90). ~

§4. Isotropic Finsler spaces.

We shall conider an k-isotropic Finsler space F* which is intreduced by
H. Akbar-Zadeh ((17, [12] §22).

In the isotropic Finsler space the h-curvature tensor Ry;j; is written in the
form

4.1) Ruijp=R(grgi—8ngij) -

TueoreM (H. Akbar-Zadeh) An h-isotropic Finsler space of dimension n
3 are such that '
(1) R=constant.
(2) P-symmetry and Sy;j=0, provided R+0.

From (4.1) it is easily verified that the Ricci tensor R;; is symmetric,
i.e, R;;=(n—1)Rg;; The equations (2.2), (2.2)’, (2.2)” are trivial beca-
use of R=constant and metrical property (g;;ix=0) of the Cartan connection
Cr.

Here we shall reconsider (2.5)”” and (2.6)’ which were derived from the
Bianchi identities of the second group. From (4.1) we have

Rij=R(y;gi—vgi;)-
Consequently (2.5)’/ reduces to
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(2.5D)" Ciio1o=—RL*C;.
Next (2.6)7 is now rewritten as
(2-6D)’ Ciio1t—Crio1 j=R(3,Ct—xC)).

REMARK 13. The contraction of (2.6I)’ by y* yields (2.51)’ immediately.
From (2.51)"” we see that C;;,,=0 is equivalent to C;=0, provided R+0.
This fact has been shown already by H. Akbar-Zadeh ([1] p. 48).

REMARK 14. An h-isotropic and C-reducible Finsler space is a Riemannian
space (See [14] Theorem 2).

Hereafter suppose that R+0. Then we see P,;V=P;® because of the P-
symmetry. We shall denote it by P;;. The expressions (2.6) and (2.10)
are written respectively as follows:

(2.6D) Pijia—Ppij=Agy (Rg1;Co+Prj, Py,

(2.10D) Pijli—Pul;=Pp4 Cr;—Pp,; Clh

From these equations we get respectively
Pmip=-—(n—1)RC;+P" P7,, (P";=g"P.,),
p»|,=—PnC7,.

§ 5. The scalar carvature and Ricci tensors.

A Finsler space F* is said to be of scalar curvature K ([2], [12] §26)
if the equation

(5. 1) RaiaszLZhij

holds good at any (z,v) of F*, and to be of constant curvature K if, fur-
thermore, the scalar K is constant.
It is well-known ([12] (26.5)) that (5.1) is equivalent to

(5.2) Rijp=L*(K jhiz— K 4hi;) [3+ K (yhip—vihij)
where we denot i=0/0y".

In general the Berwald curvature tensor Hj,j satisfies the following iden-
tities ([127818):

(5.3) Hyijp=Ryjpin—2CR" j3,
(5. 4) Hyijp= — Hyiyj,
5.5) Scijw (H ) =0.

Substituting (5.2) into (5.3), we have ([12] (26.6))
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(5.6) Hy3=K(grjgan—gmei)) + (1/3) AunB8Kiayigi
+ LKy ;hgin—lLiga—ligm) + LKy jirhit -

Here we shall define three H-Ricci tensors from the RPRerwald curvature
tensor Hj;;, in the following form:

(5.7) H;;=Hy7 ., H;Y=Hr,; H;®=Hr,,.

From (5.5) it is easily seen that H;;—H;;=H ;.
Next it follows from (5.6) that

(5.8 H;;= (n—1) (Kgi;+Kiiy;+Kijy) + {(n—2) L2K 1
+ @+ Kyt /3,
(5.9) H;; Y= (n—1) Kgij+ {(n—3) (Ky ;3:+Kyiy;) + LK | m1 18™"h;;

—L2K 1~ (#+1) K ;951 /3.

From (5.8), (5.9) the H-scalar curvatures H (=H;;g') and H® (=H;®
g'/) are written in the form

H=n(n—1) K+ (n—2) LK 5 ,2™"/ 3,
HV=H.
On the other hand, from (5.8), (5.9) it is observed that
(6.11)  H;—H;=H;® —H;V=H;®= (n+1) (Ky;9;— Ky j:) /3.

THEOREM 8. Let F* (n=3) be a Finsler space of scalar curvature K. Then
F* is of constant curvature if and only if the Ricci tensor H;;j(or H;{V) is
symmetric or H;;® vanishes.

(5.10)

Proof. From (5.11) we have Kj;y;—Kj;y;=0. Contracting this by /,
we get Ky;=0, which means that K is a function of position only. By vi-
rtue of generalized Schur’s theorem, K becomes constant (See [27], [12]
Prop. 26.1). The converse is clear.

REMARK 15. This theorem as to H;; has been shown by L. Berwald ([2]
p.775).

The relation between the Cartan’s A-curvature tensor Rj;;; and the Berwa-
Id’s one Hj;j; is generally given by

(5.12) Ryijp= (Hyija— Hipje) [2— PpeiP 74 - PintP{

Next we shall treat the h-Ricei tensor R;; in the space of scalar curva-
ture. Substituting (5.6) into (5.12) we get :

(5.13) Ryiji=K (hyjhap—hpshi;) + Ao thieMyj— haeM;;j
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— Py, ;P74
where we put
M, ;(=Mj) = (L2K . j-+ 3K wy;+ 3K, jon— 6Kl ;) /6.
Multiplying (5.13) with g we have
(5.14) Rij={(n—1)6Kg;;+ @n—7) (Kyiy;+~K j3:) LK. - n2™h;;
+(n=3)L2K ;.\ [6+Pm P —Pm P,
From (5.14) the h-scalar curvature R (=R;;g') is given by
(5.15) R={3n(n—1)K~+ (n—2) L2K ,,, g™} /3 g'iPm,P "= P7P,,.
We have from (5.13) and (5.14) directly

THEOREM 9. In a Fnisler space of scalar curvatvre K the following hold
rood :

(1) Rpiji=Rjmi,
(2) Sejm {Rpije =0,
(8) The h-Ricci tensor R;; is symmetric and given by (5.14).

REMARK 16. In a Finsler space of scalar curvature it is verified by means
of (5.2) that

S Ca iR 1 =0,
Ao €T iR —CiT iR, i) =0.

Therefore from (1.7), (1.8) we have another proof of (1), (2) of Theo-

rem 9 not refering to the components of the h-curvature tensor Ry, of (5.
13).

REMARK 17. In case of constant curvature, the Ricci tensor R;; is, of
course, symmetric as shown and used by Y. Takano [257]. In case of scalar

curvature, (3) of Theorem 9 is shown independently and almost simultane-
ously by C. Shibata [21].

THEOREM 10. Let Fn(n=3) be a Finsler space of scalar curvature K. If
R;;=vg;; with some scalar v, then F" is of constant curvature.

Proof. Suppose that R,;=:g;; Contracting this by y/, we get R,=vy;.
From (5.14) we have

R,i= {3 (ﬂ"‘l) Ky;—}— (ﬂ —2) LZK;‘ ;} /3.
These equations yield

3(n—1)Ky;+ (n—2) L2K ;= 3vy;.
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We take the contraction of the above by ' to get v=(z—1)K, so that K;
=0 provided n=3. Consequently K is constant.

THEOREM 11. Let F*» (n=3) be a Finsler space of scalar curvature K. If
H;p=vg;; (or Hup'P=y'g;;) with some scalar v (or '), then F* is of cons-
tant curvature, where () denotes the symmetric part of H;; (or H;;V).

This is easily obtained in the similar way to the proof of Theorem 10.

Here we recall Theorem 1 in §2. In case of scalar curvature, it is easily
seen that the quantity Z; (See (2.12)) is identically zero. Further. from
(5.2), (5.14) the tensor B} is written in the form

Bt=(n—2)L*Z}/3, (Z}=K,iy*—3Kh}, hl=h;gh).
Hence we have from Theorem 1

THEOREM 12. In an n (=3)-dimensional Finsler space of scalar curvature
K, the tensor ZF=K,;y*—3Khp satisfies the conservation law Z} ,=0.

REMARK 18. In case of constant curvature K, from (BC-I-3) H. Rund
has derived ([18] (3.15), [12] Th. 26.4) another conservational law G},
=(, where

G*;=RY—R5}/2—KSy*y;/2, (§=8;;g%).
REMARK 19. In a Finsler space of scalar curvature K the equation, which

is one of the Bianchi identities of the Berwald connection Bl ([12] (18.
20)),

Siip AGatir R ja+-Hut;jia} =0
reduces to a simple form
Scijp {Hzi 58} =0.

This was suggested by Prof. M. Matsumoto. The semicolon (;) means the
covariant differentiation with respect to the Berwald connection B/I. The
contraction of the above equation by g™, however, leads us rather compli-
cated equation, because the Berwald connection BI’ is not metrical.

Next we are concerned with a C-reducible Finsler space of scalar curva-
ture K. In a C-reducible Finsler space, P;; is given by (3.3). Substituting
this into (5.13), we obtain

(5.16) Ryiji=Aip thiaNpj+ Ry jNit

where we put N;(=Ny)=(K—{)k;;/2+ M,;;—G,G;. The expression (5. 16)
is very interesting because the A-curvature tensor Rj;j is simply written in
terms of an angular metric tensor %;;. Cf. Theorem 29.2 of [12].

Similarly substituting (3.3) into (5.14), (5.15), we get respectively
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(5.17) Rij={(n—1) (K—0) +L2K 1™ /6} hij+ (n—1) Kl d;
+{@Bn—T)L(;K);+1;Ky;)+ (n—3)L2K ;1 1} /16— (n—3) GG,
(5. 18) R=R;;gi=n(n—1)K— (n—2) {(n+1)L— LK n1,g™/3} .

Consequently, in case of K=0, we have

THeorReEM (H. Yasuda [25] Th. 7). Let F* (n=23) be a C-reducible Finsler
space of vanishing scalar curvature K. Then F" becomes locally Minkowski®
if one of the following conditions holds good:
(1) In case of n=3, R;;=0 and positive-definite.
(2) In case of n=3, R=0 and positive-definite.
(3) In case of n>3, R;;=0.

Proof. Suppose thak K=0. Then (5.17) and (5.18) reduces to respecti-
vely

(5 19) R,‘j:‘“(ﬂ_l)Ch,'j— (n——3)G,~Gj,
(5.20) R=—(n—2)(n+1)C.

If R;;=0 and n=3, from (5.19) we obtain { (=GiG;)=0, so that G;=0
(the Berwald space), provided the metric is positive-definite. Consequently
we have N;;=0, so that, from (5.16), Ry;=0. If R;;=0. and n>>3, we
contract (5.19) for / and j to obtain =0, so that we have G;=0. The
proof of (2) is similarly obtained from (5. 20).

REMARK 20. The (v)huv-torsion tensor P;; takes place in (5.13), (5.14)
and (5.15). We have treated these equations for C-reducible spaces where
P;;i is of a simple form (3.3). The simplest case P;;;=0 leads us to a tri-
vial result, because S. Numata ([17],[12]830) has shown that a Finsler
space (n=3) of scalar curvature K#0 with P;;=0 is a Rimannian space
of constant curvature K.

§6. The v-curvature tensor S;;; and the Ricci tensor S;;.

We consider a tangent space F,” of an n-dimensional Finsler space F* at
a point z=(2f). Then F,” is regarded as an n-dimensional Riemannian spa-
ce equipped with the fundamental tensor g;; (z,y) where z is fixed. The
components of the C-tensor Cj; are nothing but the Christoffel symbols con-
structed from g;; (z,y) with respect to y and the wv-curvature tensor Sy;;; is
the Riemannian curvature tensor of F,». Consequently the tensor U/ =Si;,—
35812 (87, =gy Si;=8™Simjnn S=g'S;;) satisfies the conservation law
U;#| ;=0 which is the well-known result in Riemannian geometry [227.

The v-curvature tensor Sj;j; and the v-Ricel tensor S;; are studied by, for

5) X Ru;=0 and C.;,5=0, then the Finsler space is called locally Minkowski ([12] '§24).
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instance, F. Brickell [3], S. Kikuchi [5], M. Matsumoto [97, [11], [12],
S. Numata [16] and others [157, [23], [24].

A Finsler space F» is called (a, B)-metric if the fundamental function is
of the form L(a, 3), where a?(z, y) =a;;(z) ¥y, B(z,y) =b;(x)y and L(a,
B) is positively homogeneous of degree 1 in a, 8. Here the quadratic form
a?(z, dz) is supposed to be a Riemannian metric of the space. If L(a, )
is of the form L(a, ) =a-+p5 (resp. a?/B), the Finsler space is called the
Randers space (resp. Kropina space). The concrete form of the v-curvature
tensor Sy;;; of the Randers space is seen in [8], [19]. The one of the Kro-
pina space is given by C. Shibata [207]. Further in case of (a, 8)-metric,
which is called the generalized Randers space, S. Numata gives the v-cur-
vature tensor Sj;; in a very simple form [16] and obtains the v-Ricci tensor
S;;. Here we sum up the results obtained hitherto related to the v-curvature
tensor Sy;;; and the v-Ricci tensor S;;.

(I) In case of =2

The v-curvature tensor Sy j; is identically zero ([10] p. 152, [12] Prop. 28
3).

(I) In case of n=3

(1) The v-curvature tensor Sp;j is always written in the following form

{53, [11], [12]
(6.1) L2832 11 S (hpjhiz— hish;;)
where § is some (0)p-homogeneous scalar field in 5. Consequently the
v-Ricci tensor S;; is given by
(6 2) Sisz—zSh,:j.

(2) The v-curvature tensor Sj;; vanishes if and only if the »-Ricci tensor
S;; vanishes. Consequently the Finsler space F3 with S;;=0 is a Rieman-
nian space under the well-known F. Brickell's conditions [3].

(3) If R;;=vg;; with some scalar », then the v-curvature tensor Spije or the
h-curvature tensor Ry;;; vanishes [9].

() In case of n>3

(1) The v-curvature tensor Sj,;; vanishes if and only if the indicatrix I, is
of constant curvature 1 ([12] Th. 31.1).

(IV) In case of n=4

(1) The v-curvature tensor Spize is always written in the form
(6.3) Shije=A¢p hiMp+haMyj),
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where M,'j‘——S,'j“‘Sh,'j/li, E:S;J-gif ([11], ]:12] Th 31. 2)
(V) In case of n=>4

(1) Let F» be a Finsler space with (a, g)-metric. If S;;=0, then F7 is a
Riemannan space provided 42 (=a'ib;5,) #constant [16].

(2) Let the v-curvature tensor Sy ; is of the form (6.1). Then the scalar
£=8(x) and the indicatrix 7, is of constant curvature S--1 ([12] Th.
31.6).

(3) Suppose that the v-curvature tensor Sy, is of the from

(6. 4) Shijk=Ac¢wp b Eixt hixEnj}

where E;; is a (—2)p-homogenous Finsler tensor field. Then the follow-
ings hold good [157:
(1°) E;; is given by
RSN | S h.:—S:. = 8. .ol
Et] ﬂ*“3 2(?1—2) o1y Slj) (S Sth J)a
and (6.4) is written in the form

1

(6.4) W

S
Shijt= gy (ny” ks~ Raihi)

Agjy rrSi;— i} -
(20) If S,-jzo, then Sh,'jk“‘O.
(3°) F* is P-symmetry if and only if S;;,=0.
(VD In case of n=5
(1) Let the v-curvature tensor Sy,j; is of the form (6.4). Then the follow-
ing hold good:
(1°) The indicatrix I, is conformally flat, i. e., the Weyl conformal

curvature tensor vanishes [12].
(2°) The tensor

hi; Tyt (n—2) (Sipl ;- L7 Sul ;)
is symmetric in j and %, where T,=35]|,;/2-+ L 1S[[15].

REMARK 21. In the paper [9], quasi-C-reducible Finsler spaces with &;
=0 are also treated. Any Finsler spaces with (a, 8)-metric is quasi-C-redu-
cible. With respect to the contracted tensor T;;(=g™T;u;s), S. Numata
proved the following:

(1) Let F*» (n=3) be a Finsler space with («, 8)-metric. If T;;=0, then F»
is a Riemannian space provided 52+ constant, where the original tensor
Thijr is defined in the form
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Thijp= LCyi; s+ UCijp+LCim+1 j?khi'l"lkchij-
Recently this tensor T, is used by Prof. M. Matsumoto in characterizing
Finsler spaces with cubic metric.
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