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A CHARACTERIZATION OF THE UNITARY GROUPS U4 (2n)

BY ONE CENTRAL INVOLUTION

By SEUNG AHN PARK*

1. Introduction

The purpose of this paper is to generalize the mam theorem in the unpu­
blished paper [6].

Let U4 (q) denote the four-dimensional projective unimodular unitary gr­
oup, where q= 2n• Let Hq be the centralizer in U4 (q) of a central involu­
tion of U4 (q). Then the center of Hq is an elementary abelian subgroup of
order q. The following is the main theorem in [6].

THEOREM (Suzuki): Let G be a finite group. Suppose that G contains a
subgroup H which satisfies the following two conditions:

(1) H is isomorphic to Hq, and
(2) H= CG (z) for any involution z in the center of H.

Then one of the follozving holds:
( i) H is normal in G, and q-l is divided by IG : HI,
( ii) q = 2 and G= 0 (G) . H, or
(iii) G is isomorphic to U4 (q) .

The geralization of the above theorem is done by omitting the assumption
(2). Note that the center of Hq has P-l involutions. Our theorem is as follows.

THEOREM: Let G be a finite group, Suppose that G contains a central
involution J such that the centralizer H of J in G is isomorpic to Hq. Then
one of the following holds:

( i) H is normal in G,
(ii) G=O(G)'CG(z) for some involution z in the center of H, or
(iii) G is isomorphic to U4 (q).

The structure of the group U4 (q) has been studied in the author's paper
[4]. We consider the subgroup T of H which corresponds to the maximal
normal 2-subgroup of a parabolic subgroup of U4 (q). If NG (T) is 2-closed,
then we can show that the case (i) or (ii) of Theorem holds. If NG (T)
is not 2-closed, then we can show that NG(T) IT is a (T!) -group and that
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H=CG(z) for any involution z in the center of H. Thus we can obtain the
case (iii) of Theorem by using the same argument as that in [6].

We will use the same notation as that of [4J and omit the detailed dis­
cussion oil the group U4 (q). An element of order 2 in a group is called an
involution. An involution is central if it is contained in the center of some
Sylow 2-group. A finite group is 2-closed if it has a normal Sylow 2-group.
A finite group is called a (T!) -group if the intersection of any two distinct
Sylow 2-groups is trivial. By 0 (G) we mean the maximal normal subgroup
of odd order in a finite group G.

2. Some Properties of Hq

Let F be a finite field with q2 elements, where q=2". Denote aq by a for
all a in F. Use the same notation as that of [4J to define

U1= {Xl (a) : aEF},

U2= {X2(/3) : /3EF, ~=/3},

U3= {X3(r) : rEF},

U4= {X4(0) : OEF, 3=a},

P= {h1 (u)h2 (A) : jJ.j-l=l, lA-1 =1},

s= u1U2U3 U4•

Then the element X4 (1) is a central involution of the group U4 (q) and the
centralizer Hq of X4 (1) in U4 (q) is

Hq=SPUSPn2U2

where n2 is an involution.
Let G be a finite group which satisfies the condition of Theorem. Identify

the involution j of G with X4 (1), and the subgroup H of G with the cen­
tralizer Hq. Then H is of order q6 (q2-1) (q+ 1) and S is a Sylow 2-group
of G. The multiplication in S is given by the commutator relations:

[fC1 (a), x2(13) J=X3 (amX4 (aa/3),

[Xl (a), X3 er) J=X4 (af+ar)

and all other types of commutators between elements of the various U i are
trivial. The subgroup P is an abelian group of order q2-1 whose multiplica-
tion is defined by .

h.(r)h.(o) ="'.(ro).

The subgroup SP is the normalizer of S in H, and the action of the ele­
ment h=h1 (p)h2 (A) of P on S is given by
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h-1Xl (a) X2 (f3) h= Xl (p-2 Aa) X2 (;'-2f3) ,

h-1X3 (r) X4 (0) h = X3 (p-2 ;(-17) x4 (0).

The involution n2 transforms the elements of SP as follows:

n2hl (u.)h2(A)n2=h l (p)h2(A-l) ,

n2XI (Il)X4(j3)n2=X3(a)X4({3) ,

n2x2 (f3) n2 = X2 (j3-l) h2(p-l) n2x 2(p -1).

In particular

(n2X2 (1) ) 3 = 1,

Denote Z(H) by Z. It is easy to see that Z=Z(H) =Z(S) = U4, and it is
an elementary abelian group of order q. From the condition of Theorem it
follows that H=Cc(Z) =Cc(j) and that H~Cc(z) for any involution z of
Z. The maximal normal 2-subgroup of H is D= U l U3U4. The ex­
tension of Hover D splits. The subgroup of S which plays an important
role in the following discussion is T= U2U3U4• Let Q= {Xl (a) : a=a} . T
and U = CQ (Xl (l). The subgroup Q of S is of order q5, and T and U are
elementary abelian groups of order q4 and q3, respectively.

(2. 1) Any involution of S is contained ill eithe7- T or D. If t is an ele­
ment in T - D, then CH (t) is 2-closed with S-ylow 2-group T. Any im:olution
in D-Z is conjugate in H to X30). Moreo'z:er, if t is in (TnD)-Z, then
CH(t) is conjugate to Q by an element of P.

Proof. This follows from an easy computation.

(2.2) Any maximal elementa7"y abelian SUbg7·0UP of H is conjugate in H to
either T or U.

Proof. Let A be a maximal elementary abelian subgroup of H. By Sylo­
w's theorem we may assume that A~S. By (2.1) either A~D or A has
an element t contained in T - D. Suppose that A has an element t contained
in T - D. Then AS;;Cs(t) = T by (2.1) and the maximality of A yields A=
T. Suppose that A ~D. Since D is normal in H, we may assume by (2. 1)
that x3(1) EA. Since Q=CS(X3(l», we have A~Q. On the other hand,
each involution of Q is contained in either T or U. By the maximality of
A and the above argument, there is an involution u in (U - T) nA. This
yields that A~U=CQ(u), and A=U by maximality.

(2. 3) S is the only Sylow 2-group of H which contains T. Moreover, T
is the only elementar:l abelian subgroup of S of order q4.

Proof. Since N H(S) = N H(T) = SP, the assertion follows from (2. 2) .
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(2.4) NG(Z) = Nc(H) = {xEG : PEZ}, and
the number IjC' nZI = ING(Z) : HI is odd.

Proof. If pEZ then Hz=CG(jx) ~H, which yields HX=}L Since Z is
the center of Hand NG (Z) / H is of odd order, the assertion holds.

(2. 5) Two elements of T are conjugate in G only if tkey are conjugate in
NG(T).

Proof. Let u and v be two elements of T such that v=UX for some x in
G. Since CG(v) contains both T and Tx, by Sylow's theorem there is an
element y of CG(v) such that both T and Txy are contained in the same
Sylow 2-group of CG (v). But T is the unique maximal elementary abelian
subgroup of order q4 of a Sylow 2-group in G which contains T, by (2. 3).
Hence we have T= Txy. Moreover, V=UX=UXY, and the assertion follows.

(2. 6) Any element x of H suck tkat [x, T] ~ Z is contained in T.
In particular, T is a self-centralizing subgroup of G.

Proof. The element x normalizes T. Hence xENH(T) =SP. Now an
easy computation yields xE T.

(2. 7) If a Sylow 2-group SI of G contains T, then SI normalizes T, and
T contains Z(SI)'

Proof. Since by (2.3) T is the unique elementary abelian subgroup of SI
of order if, the group T is normalized by SI' By (2.6) the center Z(SI)
is contained in T.

(2.8) NG(S) =Nc(T) nNG(Z)

Proof. Since by (2. 3) T is a characteristic subgroup of S, we have
Nc(S) ~NG(T) nNG(Z). Let x be an element of NG(T) nNc(Z). Then
Tr;;;SX and Z=Z (Sx). Hence Sxr;;;H=Cc(Z), and it follows from (2.3) that
SX=S. The assertion holds.

3. Nonsimple cases

For the remainder of this paper the symbols G, j, H S, P, Z, D, T and Q
retain the meanings given to them in Section 2. This section is devoted to
proving the following result:

(3.1) If Nc(T) is 2-closed, then one of tke following holds:
( i) H is normal in G, or
(ii) G=O(G) ·CG(z) for some involution z in Z.

We assume in this section that NG(T) is 2-closed and we proceed with
the proof of (3.1). Note that the assumption yields NG(S)=NG(T) ~NG(Z)
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by (2.8).

(3.2) No element in H - Z is conjugate in G to any element of Z.

Proof. By (2. 1) every involution of H is conjugate to an involution of
T. By the assumption Z is normal in NG (T). Hence the result follows from
(2.5).

(3.3) If there is a conjugate Zl of Z such that 1Z : Zl nZ 1 = 2, then the
case (ii) of (3.1) holds.

Proof. For some element x in G we have Zl=Zx. Let I=ZlnZ and
C=CG(I). Then C contains both Hand Hx. Since Zx=!,:Z, it follows from
(2.4) that C1=H and jEZ-I. It is also easy to see that Z(C) =1. Since
Cdj) =H and IZ: 11 =2, this yields that CGCz) =H for every element z

in Z-I. Hence no element in Z-I is conjugate in G to any element of I.
In particular we have jG nZr;;;; (Z-1). Consider the product z of all elements
in jG nZ. Since IZ : 11 =2 and UG nZI is odd by (2.4), the element z is
contained in Z-I, and it is an involution, By a Burnside lemma any two
elements of Z are conjugate in G only if they are conjugate in NG (Z). Hen­
ce it is easy to see that zG nZ= {z}. By (3.2) this implies that (z) is
weakly closed in S with respect to G. Thus the result follows from a the­
orem of Glauberman [2].

(3.4) If there is no conjugate Zl of Z such that 1Z : Zl nZ 1= 2, then the
case (i) of (3. 1) holds.

Proof. By (2.4) it suffices to show that Z is normal in G. First, we
will show that CG(t) is 2-closed for any element t in T - D. Let t be an ele­
ment in T-D. Since NGCS)=NG(T), it follows from (2.7) that ~ is the
only Sylow 2-group of G which contains T. Hence T= Cs (t) is a Sylow 2­
group of CG(t). Suppose that CG(t) is not 2-closed. Then there is an ele­
men t x in CG (t) such that Tx 1= T. Choose an element x in such a way
that the intersection 11 = Tx nT has a maximal order. Since CH(t) is 2-c10­
sed with Sylow 2-group T by (2.1), we have HX1= H. By (2.4) this im­
plies that zx 1= Z. Set 1= Zx nz. Then it follows from (3. 2) that 1=11 nZ
= Tx nz, and the assumption of this proposition yields that 1'= IT / III =

IZ/II ::::C4. Set C1=CG(Il)' Then C\r;;;;CG(t), and by the maximality of 11 the
group C1/I1 is a (T1) -group which is not 2-c1osed. Hence, by (4.2) of
[5J, there is a cyclic subgroup R of order l' - 1 in N G (T) nC\ which acts
transitively on non-identity elements of T/h Since NG(T) r;;;;NdZ), the
subgroup R normalizes Z. Hence any element in Z-11=Z- I has at least
1'-1 conjugates lying in Z, which implies IZ: 11 =1' and T=ZI1• :t\ow we
have [T, RJr;;;;Z. Hence [T, R, SJ=l and [5, T, RJ~Z. By the three-sub-
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group lemma we have [R, S, TJ ~ z. This implies that [R, SJ~ T by (2. 6).
Hence, by (5.3.6) of [3J, it follows that CS, RJ=[S, R, RJ~[T, RJ~Z.

Again by the three-subgroup lemma, it follcws, that R centralizes LS, S].
Since Z is contained in CS, SJ, this is a contradiction. This proves that
CG(t)is 2-closed.

Suppose that Z is not normal in G. Let x be an element of G such that
zz =1= Z. Set 1=Zz nZ and C=Cd!). Consider an element t in T - D. Then
the involution j is contained in Z-I by (2.4) and it is not conjugate in C
to tX by (3.2). By (4.1) of [5J there is an involution w in C which com­
mutes with j and t Z , and wj is conjugate in C to either j or t X

, By the
earlier argument Cdtx) is 2-closed with Sylow 2-group TX, which implies
that w belongs to Tx nH. Suppose that wj is conjugate in C to j. Since wj
must be in Z by (3. 2), the involution w is in Tx nZ= Zx nZ. Hence wj
and j are contained in Z - I, and they are conjugate in NdZ). But since
NG(Z) / H is of odd order, this yields a contradiction. Now suppose that wj
is conjugate in C to t X • Then wtZ is conjugate in C to j, and wtZ is contai­
ned in zx by (3.2). Thus the involution w is contained in TX- DZ, and
CG(w) is 2-closed with Sylow 2-group Tx. This yields jET,XnZ=Zxnz=
I. But this is a contradiction.
This completes the proof of (3. 4).

(3. 5) The proposition (3. 1) holds.

Proof. This follows from (3. 3) and (3. 4).

4. Identification With U4 (q)

In order to complete the proof of our Theorem we will prove the follow­
ing result:

(4.1) If NG(T) is not 2-closed, then G is isomorphic to U4 (q).

We assume in this section that NG(T) is not 2-closed, and we try to ob­
tain a condition for H so that we can apply the Suzuki's theorem to G.

(4.2) NG(Q) is 2-closed with Sylow 2-group s.
Proof. As in (3.13) of [4J we can show that Z is characteristic in Q.

Since T is the only maximal elementary abelian subgroup of Q of order q4

by (2.3), it is characteristic in Q. These yields that NG(Q) normalizes
both T and Z, and we have NG (Q) ~NG (S) by (2. 8). Hence the assertion
holds.

(4.3) NG(T) IT is a (T!)-group.

Proof. Let SI be a Sylow 2-group, =1= S, of NG(T). By (2.3) the group
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NG (T) nCG (Z (SI» is 2-closed with Sylow 2-group SI> and this yields that
Cs (Z(SI) ) =sn SI. Since Z(SI) ~ T, it follows from (2.1) that sn SI is ei­
ther equal to T or conjugate to Q by an element of P. Here, we use the fact
that Qh nQ is either Q or T for any element h of P. Since SI T is abeli­
an, sn SI is normalized by both S and SI. Hence it follows from (4.2) that
S nSI is equal to T.

(4. 4) The extension of NG(T) 07:er T splits.

Proof· By the structure of S, the extension of Saver T splits. Hence
the result follows from a theorem of Gaschiltz [1].

(4.5) NG(T) contains subgroups Land K ~('hich satisfy the following pro-
perties:

(i) K is a complement of S in NG(S) containing P,
(ii) L is a complement of T in NG(T) containing K, and
(iii) L contains a normal subgroup Lo isomorphic to L 2(q2).

Proof. It is obvious that there is at least one subgroup K satisfying (i).
By (4.4) there is a complement L of T in NdT). Now it is easy to see
that SnL is a Sylow 2-group of L and that NG(S) nL=NL(SnL). Hence
a complement of SnL in NL(SnL) is a complement of S in NG(S), and
it is conjugate to K. Therefore, we may assume that L satisfies (ii). By
(4.3) the group L is a (TI) -group with an elementary abelian Sylow 2­
group of order q2. Hence it follows from (4.2) of [5J that L contains a
normal subgroup L o satisfYing (iii).

(4.6) The group K normalizes exactly two Sylow 2-groups S and SI of
NG(T).

Proof· This follows from the property of L 2(q2). See (4.3) of [5].

(4.7) Any two involutions of Z are conjugate in G.
In particular H=CG(z) for any involution::: of Z.

Proof. Let SI be a Sylow 2-group of NG(T) defined in (4.6). Then
Z(SI) is normalized by K. and it is contained in T by (2.7). By the str­
ucture of H, the subgroup R= !h2 (A) : ~A.-l=11 of P acts semi-regularly on
T-Z. Since Z(SI)*Z and IRI=Q-1. this implies that any two involutions
of Z(SI) are conjugate. Hence the result follows.

(4.8) The proposition (4.1) holds.

Proof· By (4.7) we can repeat the argument in [6J to obtain the result.
We remark that we can also use the Suzuki's theorem introduced in Se-

ction 1. Since N G (T) is not 2-closed, as in the proof of (4. 7), there is a
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conjugate Zl of Z such that Zl *" Z and Zl~ T. By (2. 4) and a theorem of
Glauberman [2J, therefore, the cases (i) and (ii) of the Suzuki's theorem
can not occur. Hence G must be isomorphic to U4 (q).

Now the proof of our Theorem has been completed.
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