A CHARACTERIZATION OF THE UNITARY GROUPS $U_4(2^n)$ BY ONE CENTRAL INVOLUTION

By SEUNG AHN PARK*

1. Introduction

The purpose of this paper is to generalize the main theorem in the unpublished paper [6].

Let $U_4(q)$ denote the four-dimensional projective unimodular unitary group, where $q=2^n$. Let H_q be the centralizer in $U_4(q)$ of a central involution of $U_4(q)$. Then the center of H_q is an elementary abelian subgroup of order q. The following is the main theorem in [6].

THEOREM (Suzuki): Let G be a finite group. Suppose that G contains a subgroup H which satisfies the following two conditions:

- (1) H is isomorphic to H_0 , and
- (2) $H = C_G(z)$ for any involution z in the center of H.

Then one of the following holds:

- (i) H is normal in G, and q-1 is divided by |G:H|,
- (ii) q=2 and $G=O(G)\cdot H$, or
- (iii) G is isomorphic to $U_4(q)$.

The geralization of the above theorem is done by omitting the assumption (2). Note that the center of H_q has p-1 involutions. Our theorem is as follows.

THEOREM: Let G be a finite group, Suppose that G contains a central involution j such that the centralizer H of j in G is isomorpic to H_q . Then one of the following holds:

- (i) H is normal in G,
- (ii) $G=O(G)\cdot C_G(z)$ for some involution z in the center of H, or
- (iii) G is isomorphic to $U_4(q)$.

The structure of the group $U_4(q)$ has been studied in the author's paper [4]. We consider the subgroup T of H which corresponds to the maximal normal 2-subgroup of a parabolic subgroup of $U_4(q)$. If $N_G(T)$ is 2-closed, then we can show that the case (i) or (ii) of Theorem holds. If $N_G(T)$ is not 2-closed, then we can show that $N_G(T)/T$ is a (TI)-group and that

Received by the editors Jan. 20, 1977.

^{*}This research was supported by the Korean Traders Scholarship Foundation.

 $H=C_G(z)$ for any involution z in the center of H. Thus we can obtain the case (iii) of Theorem by using the same argument as that in [6].

We will use the same notation as that of [4] and omit the detailed discussion on the group $U_4(q)$. An element of order 2 in a group is called an *involution*. An involution is *central* if it is contained in the center of some Sylow 2-group. A finite group is 2-closed if it has a normal Sylow 2-group. A finite group is called a (TI)-group if the intersection of any two distinct Sylow 2-groups is trivial. By O(G) we mean the maximal normal subgroup of odd order in a finite group G.

2. Some Properties of H_q

Let F be a finite field with q^2 elements, where $q=2^n$. Denote α^q by $\bar{\alpha}$ for all α in F. Use the same notation as that of [4] to define

$$\begin{split} &U_{1} = \{x_{1}(\alpha) : \alpha \in F\}, \\ &U_{2} = \{x_{2}(\beta) : \beta \in F, \bar{\beta} = \beta\}, \\ &U_{3} = \{x_{3}(\gamma) : \gamma \in F\}, \\ &U_{4} = \{x_{4}(\delta) : \delta \in F, \bar{\delta} = \delta\}, \\ &P = \{h_{1}(\mu)h_{2}(\lambda) : \bar{\mu}\mu = 1, \ \bar{\lambda}\lambda^{-1} = 1\}, \\ &S = U_{1}U_{2}U_{3}U_{4}. \end{split}$$

Then the element $x_4(1)$ is a central involution of the group $U_4(q)$ and the centralizer H_q of $x_4(1)$ in $U_4(q)$ is

$$H_q = SP \cup SPn_2U_2$$

where n_2 is an involution.

Let G be a finite group which satisfies the condition of Theorem. Identify the involution j of G with $x_4(1)$, and the subgroup H of G with the centralizer H_q . Then H is of order $q^6(q^2-1)(q+1)$ and S is a Sylow 2-group of G. The multiplication in S is given by the commutator relations:

$$[x_1(\alpha), x_2(\beta)] = x_3(\alpha\beta) x_4(\alpha\bar{\alpha}\beta),$$

 $[x_1(\alpha), x_3(\gamma)] = x_4(\alpha\bar{\gamma} + \bar{\alpha}\gamma)$

and all other types of commutators between elements of the various U_i are trivial. The subgroup P is an abelian group of order q^2-1 whose multiplication is defined by

$$h_i(\gamma)h_i(\delta) = h_i(\gamma\delta).$$

The subgroup SP is the normalizer of S in H, and the action of the element $h=h_1(\mu)h_2(\lambda)$ of P on S is given by

$$h^{-1}x_1(\alpha)x_2(\beta)h = x_1(\mu^{-2}\lambda\alpha)x_2(\lambda^{-2}\beta),$$

$$h^{-1}x_3(\gamma)x_4(\hat{o})h = x_3(\mu^{-2}\lambda^{-1}\gamma)x_4(\hat{o}).$$

The involution n_2 transforms the elements of SP as follows:

$$n_2h_1(\mu)h_2(\lambda)n_2 = h_1(\mu)h_2(\lambda^{-1}),$$

$$n_2x_1(\alpha)x_4(\beta)n_2 = x_3(\alpha)x_4(\beta),$$

$$n_2x_2(\beta)n_2 = x_2(\beta^{-1})h_2(\beta^{-1})n_2x_2(\beta^{-1}).$$

In particular

$$(n_2x_2(1))^3=1,$$

Denote Z(H) by Z. It is easy to see that $Z=Z(H)=Z(S)=U_4$, and it is an elementary abelian group of order q. From the condition of Theorem it follows that $H=C_G(Z)=C_G(j)$ and that $H\subseteq C_G(z)$ for any involution z of Z. The maximal normal 2-subgroup of H is $D=U_1U_3U_4$. The extension of H over D splits. The subgroup of S which plays an important role in the following discussion is $T=U_2U_3U_4$. Let $Q=\{x_1(\alpha): \overline{\alpha}=\alpha\}\cdot T$ and $U=C_Q(x_1(1))$. The subgroup Q of S is of order q^5 , and T and U are elementary abelian groups of order q^4 and q^3 , respectively.

(2.1) Any involution of S is contained in either T or D. If t is an element in T-D, then $C_H(t)$ is 2-closed with Sylow 2-group T. Any involution in D-Z is conjugate in H to $x_3(1)$. Moreover, if t is in $(T \cap D)-Z$, then $C_H(t)$ is conjugate to Q by an element of P.

Proof. This follows from an easy computation.

(2.2) Any maximal elementary abelian subgroup of H is conjugate in H to either T or U.

Proof. Let A be a maximal elementary abelian subgroup of H. By Sylow's theorem we may assume that $A \subseteq S$. By (2.1) either $A \subseteq D$ or A has an element t contained in T - D. Suppose that A has an element t contained in T - D. Then $A \subseteq C_S(t) = T$ by (2.1) and the maximality of A yields A = T. Suppose that $A \subseteq D$. Since D is normal in H, we may assume by (2.1) that $x_3(1) \in A$. Since $Q = C_S(x_3(1))$, we have $A \subseteq Q$. On the other hand, each involution of Q is contained in either T or U. By the maximality of A and the above argument, there is an involution u in $(U-T) \cap A$. This yields that $A \subseteq U = C_Q(u)$, and A = U by maximality.

(2.3) S is the only Sylow 2-group of H which contains T. Moreover, T is the only elementary abelian subgroup of S of order q^4 .

Proof. Since $N_H(S) = N_H(T) = SP$, the assertion follows from (2.2).

(2.4) $N_G(Z) = N_G(H) = \{x \in G : j^x \in Z\}$, and the number $|j^G \cap Z| = |N_G(Z) : H|$ is odd.

Proof. If $j^x \in \mathbb{Z}$ then $H^x = C_G(j^x) \supseteq H$, which yields $H^x = H$. Since \mathbb{Z} is the center of H and $N_G(\mathbb{Z})/H$ is of odd order, the assertion holds.

(2.5) Two elements of T are conjugate in G only if they are conjugate in $N_G(T)$.

Proof. Let u and v be two elements of T such that $v=u^x$ for some x in G. Since $C_G(v)$ contains both T and T^x , by Sylow's theorem there is an element y of $C_G(v)$ such that both T and T^{xy} are contained in the same Sylow 2-group of $C_G(v)$. But T is the unique maximal elementary abelian subgroup of order q^4 of a Sylow 2-group in G which contains T, by (2.3). Hence we have $T = T^{xy}$. Moreover, $v = u^x = u^{xy}$, and the assertion follows.

(2.6) Any element x of H such that $[x, T] \subseteq Z$ is contained in T. In particular, T is a self-centralizing subgroup of G.

Proof. The element x normalizes T. Hence $x \in N_H(T) = SP$. Now an easy computation yields $x \in T$.

(2.7) If a Sylow 2-group S_1 of G contains T, then S_1 normalizes T, and T contains $Z(S_1)$.

Proof. Since by (2.3) T is the unique elementary abelian subgroup of S_1 of order q^4 , the group T is normalized by S_1 . By (2.6) the center $Z(S_1)$ is contained in T.

(2.8) $N_G(S) = N_G(T) \cap N_G(Z)$

Proof. Since by (2.3) T is a characteristic subgroup of S, we have $N_G(S) \subseteq N_G(T) \cap N_G(Z)$. Let x be an element of $N_G(T) \cap N_G(Z)$. Then $T \subseteq S^x$ and $Z = Z(S^x)$. Hence $S^x \subseteq H = C_G(Z)$, and it follows from (2.3) that $S^x = S$. The assertion holds.

3. Nonsimple cases

For the remainder of this paper the symbols G, j, H, S, P, Z, D, T and Q retain the meanings given to them in Section 2. This section is devoted to proving the following result:

- (3.1) If $N_G(T)$ is 2-closed, then one of the following holds:
 - (i) H is normal in G, or
 - (ii) $G=O(G)\cdot C_G(z)$ for some involution z in Z.

We assume in this section that $N_G(T)$ is 2-closed and we proceed with the proof of (3.1). Note that the assumption yields $N_G(S) = N_G(T) \subseteq N_G(Z)$

by (2.8).

(3.2) No element in H-Z is conjugate in G to any element of Z.

Proof. By (2.1) every involution of H is conjugate to an involution of T. By the assumption Z is normal in $N_G(T)$. Hence the result follows from (2.5).

(3.3) If there is a conjugate Z_1 of Z such that $|Z:Z_1\cap Z|=2$, then the case (ii) of (3.1) holds.

Proof. For some element x in G we have $Z_1=Z^x$. Let $I=Z_1\cap Z$ and $C=C_G(I)$. Then C contains both H and H^x . Since $Z^x\neq Z$, it follows from (2.4) that $C\neq H$ and $j\in Z-I$. It is also easy to see that Z(C)=I. Since $C_G(j)=H$ and |Z:I|=2, this yields that $C_G(z)=H$ for every element z in Z-I. Hence no element in Z-I is conjugate in G to any element of I. In particular we have $j^G\cap Z\subseteq (Z-I)$. Consider the product z of all elements in $j^G\cap Z$. Since |Z:I|=2 and $|j^G\cap Z|$ is odd by (2.4), the element z is contained in Z-I, and it is an involution, By a Burnside lemma any two elements of Z are conjugate in G only if they are conjugate in $N_G(Z)$. Hence it is easy to see that $z^G\cap Z=\{z\}$. By (3.2) this implies that $\langle z\rangle$ is weakly closed in S with respect to G. Thus the result follows from a theorem of Glauberman [2].

(3.4) If there is no conjugate Z_1 of Z such that $|Z:Z_1 \cap Z|=2$, then the case (i) of (3.1) holds.

Proof. By (2.4) it suffices to show that Z is normal in G. First, will show that $C_G(t)$ is 2-closed for any element t in T - D. Let t be an element in T-D. Since $N_G(S)=N_G(T)$, it follows from (2.7) that S is the only Sylow 2-group of G which contains T. Hence $T = C_S(t)$ is a Sylow 2group of $C_G(t)$. Suppose that $C_G(t)$ is not 2-closed. Then there is an element x in $C_G(t)$ such that $T^x \neq T$. Choose an element x in such a way that the intersection $I_1 = T^x \cap T$ has a maximal order. Since $C_H(t)$ is 2-closed with Sylow 2-group T by (2.1), we have $H^x \neq H$. By (2.4) this implies that $Z^x \neq Z$. Set $I = Z^x \cap Z$. Then it follows from (3.2) that $I = I_1 \cap Z$ $=T^x\cap Z$, and the assumption of this proposition yields that $r=|T/I_1|=$ $|Z/I| \ge 4$. Set $C_1 = C_G(I_1)$. Then $C_1 \subseteq C_G(t)$, and by the maximality of I_1 the group C_1/I_1 is a (TI)-group which is not 2-closed. Hence, by (4.2) of [5], there is a cyclic subgroup R of order r-1 in $N_G(T) \cap C_1$ which acts transitively on non-identity elements of T/I_1 . Since $N_G(T) \subseteq N_G(Z)$, subgroup R normalizes Z. Hence any element in $Z-I_1=Z-I$ has at least r-1 conjugates lying in Z, which implies |Z:I|=r and $T=ZI_1$. Now we have $[T, R] \subseteq Z$. Hence [T, R, S] = 1 and $[S, T, R] \subseteq Z$. By the three-subgroup lemma we have $[R, S, T] \subseteq Z$. This implies that $[R, S] \subseteq T$ by (2.6). Hence, by (5.3.6) of [3], it follows that $[S, R] = [S, R, R] \subseteq [T, R] \subseteq Z$. Again by the three-subgroup lemma, it follows, that R centralizes [S, S]. Since Z is contained in [S, S], this is a contradiction. This proves that $C_G(t)$ is 2-closed.

Suppose that Z is not normal in G. Let x be an element of G such that $Z^x \neq Z$. Set $I = Z^x \cap Z$ and $C = C_G(I)$. Consider an element t in T - D. Then the involution j is contained in Z - I by (2, 4) and it is not conjugate in C to t^x by (3, 2). By (4, 1) of [5] there is an involution w in C which commutes with j and t^x , and wj is conjugate in C to either j or t^x , By the earlier argument $C_G(t^x)$ is 2-closed with Sylow 2-group T^x , which implies that w belongs to $T^x \cap H$. Suppose that wj is conjugate in C to j. Since wj must be in Z by (3, 2), the involution w is in $T^x \cap Z = Z^x \cap Z$. Hence wj and j are contained in Z - I, and they are conjugate in $N_G(Z)$. But since $N_G(Z)/H$ is of odd order, this yields a contradiction. Now suppose that wj is conjugate in C to t^x . Then wt^x is conjugate in C to j, and wt^x is contained in Z^x by (3, 2). Thus the involution w is contained in $T^x - D^x$, and $T^x - T^x \cap T^x = T^x \cap T^x \cap T^x \cap T^x = T^x \cap T^x$

This completes the proof of (3.4).

(3.5) The proposition (3.1) holds.

Proof. This follows from (3.3) and (3.4).

4. Identification With $U_4(q)$

In order to complete the proof of our Theorem we will prove the following result:

(4.1) If $N_G(T)$ is not 2-closed, then G is isomorphic to $U_4(q)$.

We assume in this section that $N_G(T)$ is not 2-closed, and we try to obtain a condition for H so that we can apply the Suzuki's theorem to G.

(4.2) N_G(Q) is 2-closed with Sylow 2-group S.

Proof. As in (3.13) of [4] we can show that Z is characteristic in Q. Since T is the only maximal elementary abelian subgroup of Q of order q^4 by (2.3), it is characteristic in Q. These yields that $N_G(Q)$ normalizes both T and Z, and we have $N_G(Q) \subseteq N_G(S)$ by (2.8). Hence the assertion holds.

(4.3) $N_G(T)/T$ is a (TI)-group.

Proof. Let S_1 be a Sylow 2-group, $\neq S$, of $N_G(T)$. By (2.3) the group

 $N_G(T) \cap C_G(Z(S_1))$ is 2-closed with Sylow 2-group S_1 , and this yields that $C_S(Z(S_1)) = S \cap S_1$. Since $Z(S_1) \subseteq T$, it follows from (2.1) that $S \cap S_1$ is either equal to T or conjugate to Q by an element of P. Here, we use the fact that $Q^h \cap Q$ is either Q or T for any element h of P. Since S/T is abelian, $S \cap S_1$ is normalized by both S and S_1 . Hence it follows from (4.2) that $S \cap S_1$ is equal to T.

(4.4) The extension of $N_G(T)$ over T splits.

Proof. By the structure of S, the extension of S over T splits. Hence the result follows from a theorem of Gaschütz $\lceil 1 \rceil$.

- (4.5) $N_G(T)$ contains subgroups L and K which satisfy the following properties:
 - (i) K is a complement of S in $N_G(S)$ containing P,
 - (ii) L is a complement of T in $N_G(T)$ containing K, and
 - (iii) L contains a normal subgroup L_0 isomorphic to $L_2(q^2)$.

Proof. It is obvious that there is at least one subgroup K satisfying (i). By (4.4) there is a complement L of T in $N_G(T)$. Now it is easy to see that $S \cap L$ is a Sylow 2-group of L and that $N_G(S) \cap L = N_L(S \cap L)$. Hence a complement of $S \cap L$ in $N_L(S \cap L)$ is a complement of S in $N_G(S)$, and it is conjugate to K. Therefore, we may assume that L satisfies (ii). By (4.3) the group L is a (TI)-group with an elementary abelian Sylow 2-group of order q^2 . Hence it follows from (4.2) of [5] that L contains a normal subgroup L_0 satisfying (iii).

(4.6) The group K normalizes exactly two Sylow 2-groups S and S_1 of $N_G(T)$.

Proof. This follows from the property of $L_2(q^2)$. See (4.3) of [5].

(4.7) Any two involutions of Z are conjugate in G. In particular $H=C_G(z)$ for any involution z of Z.

Proof. Let S_1 be a Sylow 2-group of $N_G(T)$ defined in (4.6). Then $Z(S_1)$ is normalized by K, and it is contained in T by (2.7). By the structure of H, the subgroup $R = \{h_2(\lambda) : \bar{\lambda}\lambda^{-1} = 1\}$ of P acts semi-regularly on T-Z. Since $Z(S_1) \neq Z$ and |R| = q-1, this implies that any two involutions of $Z(S_1)$ are conjugate. Hence the result follows.

(4.8) The proposition (4.1) holds.

Proof. By (4.7) we can repeat the argument in [6] to obtain the result. We remark that we can also use the Suzuki's theorem introduced in Section 1. Since $N_G(T)$ is not 2-closed, as in the proof of (4.7), there is a

conjugate Z_1 of Z such that $Z_1 \neq Z$ and $Z_1 \subseteq T$. By (2.4) and a theorem of Glauberman [2], therefore, the cases (i) and (ii) of the Suzuki's theorem can not occur. Hence G must be isomorphic to $U_4(q)$.

Now the proof of our Theorem has been completed.

References

- [1] Gaschütz, W., Zur Erweiterungstheorie der endlichen Gruppen, Jour. für die reine und angew. Math., 190 (1952), 93-107.
- [2] Glauberman, G., Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [3] Gorenstein, D., Finite groups, Harper & Row, New York (1968).
- [4] Park, S.A., A characterization of the unitary groups $U_4(q)$, $q=2^n$, J. Algebra 42 (1976), 208-246.
- [5] Suzuki, M., On characterizations of linear groups N, J. Algebra, 8 (1968), 223
- [6] Suzuki, M., On characterizations of linear groups V, (to appear)

Sogang University