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A CHARACTERIZATION OF THE UNITARY GROUPS U,(2%)
BY ONE CENTRAL INVOLUTION

By SEUNG AHN PARk*

1. Introduction

The purpose of this paper is to generalize the main theorem in the unpu-
blished paper [67].

Let U,(g) denote the four-dimensional projective unimodular unitary gr-
oup, where g=2 Let H, be the centralizer in U,(gq) of a central involu-
tion of Us(g). Then the center of H, is an elementary abelian subgroup of
order 4. The following is the main theorem in [6].

THEOREM (Suzuki): Let G be a finite group. Suppose that G contains a
subgroup H which satisfies the following two conditions:

(1) H is isomorphic to H,, and

(2) H=C¢(2) for any involution = in the center of H.
Then one of the following holds:

(1) H is normal in G, and q—1 is divided by |G : H],

(ii) ¢=2 and G=0(G)-H, or

(iii) G is isomorphic to U(q).

The geralization of the above theorem is done by omitting the assumption
€2). Note that the center of H, has p—1 involutions. Our theorem is as follows.

THEOREM: Let G be a finite group, Suppose that G contains a central
involution j such that the centralizer H of j in G is isomorpic to H, Then
one of the following holds:

(1) H is normal in G,

(ii) G=0(G) -C¢(z) for some involution = in the center of H, or

(iii) G is isomorphic to Us(q).

The structure of the group U,(g) has been studied in the author’s paper
[4]. We consider the subgroup 7 of H which corresponds to the maximal
normal 2-subgroup of a parabolic subgroup of U,(g). If Ng(T) is2-~closed,
then we can show that the case (i) or (ii) of Theorem holds. If Ng(T)
is not 2-closed, then we can show that Ng(T)/T is a (TI)-group and that
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H=Cg(z) for any involution = in the center of H. Thus we can obtain the
case (iii) of Theorem by using the same argument as that in [6].

We will use the same notation as that of [4] and omit the detailed dis-
cussion on the group U,(¢g). An element of order 2 in a group is called an
involution. An involution is cemtral if it is contained in the center of some
Sylow 2-group. A finite group is 2-closed if it has a normal Sylow 2-group.
A finite group is called a (T7)-group if the intersection of any two distinct
Sylow 2-groups is trivial. By O(G) we mean the maximal normal subgroup
of odd order in a finite group G.

2. Some Properties of H,

Let F be a finite field with ¢? elements, where g=27. Denote a? by & for
all o in F. Use the same notation as that of [4] to define

U= {z,(a) : acF},

U,= {z:(B) : B=F, =0},

Us= {x3(r) : 7€ F},

U,={z4(0) : 6€F, =0},

P={h () hs(D) : Bu=1, A 1=1},
S=U U U3Us.

Then the element z,(1) is a central involution of the greup U,(g) and the
centralizer H, of z,(1) in Uy(q) is

Hq::SP U SPﬂgUz

where n, is an involution.

Let G be a finite group which satisfies the condition of Theorem. Identify
the involution j of G with z,(1), and the subgroup H of G with the cen-
tralizer H,. Then H is of order ¢®(¢?>—1) (¢+1) and S is a Sylow 2-group
of G. The multiplication in S is given by the commutator relations:

L&, (a’) y X2 (.3) J=x (a’ﬁ) x4 (a&ﬁ) ’
Lz1(a), 23 () 1=z4 (a7 +-ar)

and all other types of commutators between elements of the various U; are
trivial. The subgroup P is an abelian group of order ¢>—1 whose multiplica-
tion is defined by

hi(7)h; (0) =h;(70).

The subgroup SP is the normalizer of S in H, and the action of the ele-
ment h=h,(uz)h;(2) of P on § is given by '
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b1z (@) 2o (B) h=xz; (r 2Ac) 2, (A72(),
Rl () 24 (0) h=z3 (7 24717) 24(3) .
The involution n, transforms the elements of &P as follows:
nohy (1) ha (D) my=hy (1) hy (A71),
naty (@) 4 (B ny=z3(a) x4 (B),
a2, (B) ny =22 (B7) ko (B~ ) npza (p71).

In particular
(nary(1))3=1,

Denote Z(H) by Z. It is easy to see that Z=Z(H)=2Z(S)=U,, and it is
an elementary abelian group of order ¢. From the condition of Theorem 1t
follows that H=Cg(Z) =Cg(j) and that HCCg(z) for any involution = of
Z. The maximal normal 2-subgroup of H is D=U,UU;. The ex-
tension of H over D splits. The subgroup of S which plays an important
role in the following discussion is T=U,U;U,;. Let Q= {x;(a) : a=0a}-T
and U=Cg(xz,(1)). The subgroup Q of S is of order ¢5, and T and U are
elementary abelian groups of order ¢* and g3 respectively.

(2.1) Any involution of S is contained in cither T or D. If t is an ele-
ment in T - D, then Cy(t) is 2-closed with Sylow 2-group T. Any involution
in D -Z is conjugate in H to x5(1). Moreover, if t is in (T D)—Z, then
Cy(¢) is conjugate to Q by an element of P.

Proof. This follows from an easy computation.

(2.2) Any maximal elementary abelian subgroup of H is conjugate in H to
either T or U.

Proof. Let A be a maximal elementary abelian subgroup of 4. By Sylo-
w’s theorem we may assume that ACS. By (2.1) either ACD or A has
an element ¢ contained in T - D. Suppose that A has an element ¢ contained
in T-D. Then AcCCg(t)=T by (2.1) and the maximality of A yields A=
T. Suppose that ACD. Since D is normal in H, we may assume by (2. 1)
that z;(1) € A. Since Q=Cs(z3(1)), we have AcQ. On the other hand,
each involution of Q is contained in either 7 or U. By the maximality of
A and the above argument, there is an involution # in (U—T)NA. This
yields that ACU=Cy(x), and A=U by maximality.

(2.3) S is the only Sylow 2-group of H which contains T. Moreover, T
is the only elementary abelian subgroup of S of order g*.

Proof. Since Ny(S)=Ny(T)=SP, the assertion follows from (2.2).
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(2. 4) NG(Z)"—‘Ng(H)’-: {.’L‘EG : j’EZ}, and
the number |jSNZ|=|Ng(Z) : H| is odd.

Proof. If j*=Z then H*=Cg(j*) 2 H, which yields H*=H. Since Z is
the center of H and Ng(Z)/H is of odd order, the assertion holds.

(2.5) Two elements of T are conjugate in G only if they are conjugate in
Ng(T).

Proof. Let u and v be two elements of T such that v=u* for some « in
G. Since Cg(v) contains both 7 and 7=, by Sylow’s theorem there is an
element y of Cg(v) such that both T and T=¥ are contained in the same
Sylow 2-group of Cg(v). But T is the unique maximal elementary abelian
subgroup of order ¢* of a Sylow 2-group in G which contains T, by (2.3).
Hence we have T=T%. Moreover, v=u*=u*’, and the assertion follows.

(2.6) Any element x of H such that [z, TS Z is contained in T.
In particular, T is a self-centralizing subgroup of G.

Proof. The element z normalizes T. Hence z=Nyx(T)=SP. Now an
easy computation yields z=T.

(2.7) If a Sylow 2-group S, of G contains T, then S, normalizes T, and
T contains Z(Sy).
Proof. Since by (2.3) T is the unique elementary abelian subgroup of Sy

of order ¢*, the group 7 is normalized by S;. By (2.6) the center Z(S;)
is contained in 7.

(2.8) Ng(S)=Ng(T)NN:(Z)

Proof. Since by (2.3) T is a characteristic subgroup of S, we have
Ng(S)SNg(T) NNg(Z). Let z be an element of Ng(T) NNg(Z). Then
T<S* and Z=2Z (Sz). Hence S2c H=Cg(Z), and it follows from (2.3) that
S#=S. The assertion holds.

3. Nonsimple cases

For the remainder of this paper the symbols G,j,H S,P,Z,D, T and @
retain the meanings given to them in Section 2. This section is devoted to
proving the following result:

(3.1) If Ng(T) is 2-closed, then one of the following holds:
(i) H is normal in G, or
(ii) G=0(G)-Ce(z) for some involution z in Z.
We assume in this section that Ng(T) is 2-closed and we proceed with
the proof of (3.1). Note that the assumption yields Ng(S)=Ng(T) S Ng(Z)
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by (2.8).
(8.2) No element in H-Z is conjugate in G to any element of Z.

Proof. By (2.1) every involution of I is conjugate to an involution of
T. By the assumption Z is normal in Ng(7T). Hence the result follows from
(2.5).

(8.3) If there is a conjugate Zy of Z such that |Z : Z,NZ|=2, then the
case (i) of (3.1) holds.

Proof. For some element r in G we have Z;=2%. Let I=Z,NZ and
C=C;(I). Then C contains both H and H=<. Since Zz#Z, it {follows from
(2.4) that C#H and j=Z—1. It is also easy to see that Z(C)=1I. Since

Cs(j)=H and |Z:11=2, this yields that C;(z)=H for every element =
in Z—1. Hence no element in Z—1I is conjugate in G to any element of I.
In particular we have j6NZ< (Z—1I). Consider the product z of all elements
in jNZ. Since |Z:1|=2 and |j°NZ| is odd by (2.4), the element = is
contained in Z—1I, and it is an involution, By a Burnside lemma any two
elements of Z are conjugate in G only if they are conjugate in Ng(Z). Hen-
ce it is easy to see that =6NZ={z}. By (3.2) this implies that (&) is
weakly closed in S with respect to G. Thus the result follows from a the-
orem of Glauberman [2].

(3.4) If there is no conjugate Z, of Z such that |Z 1 Z,NZ|=2, then the
case (1) of (8.1) holds.

Proof. By (2.4) it suffices to show that Z is normal in G. First, we
will show that Cg(s) is 2-closed for any element ¢ in T - D. Let ¢ be an ele-
ment in T - D. Since Ng(8)=Ng(T), it follows from (2.7) that & is the
only Sylow 2-group of G which contains 7. Hence T=Cs(z) is a Sylow 2-
group of C¢(t). Suppose that Cg(t) is not 2-closed. Then there is an ele-
ment x in Cg(¢) such that T#=#T. Choose an element z in such a way
that the intersection I;=T2 T has a maximal order. Since Cy(¢) is 2-clo-
sed with Sylow 2-group T by (2.1), we have H*#H. By (2.4) this im-
plies that Zz+Z. Set I=Z=NZ. Then it follows from (3.2) that I=I,NZ
=T+ Z, and the assumption of this proposition yields that r=|7T/I;|=
|Z/I1>4. Set C;=Cg(I;). Then C;=C¢(¢), and by the maximality of I; the
group C;/I; is a (7TI)-group which is not 2-closed. Hence, by (4.2) of
[5], there is a cyclic subgroup R of order » -1 in Ng(T) NC; which acts
transitively on non-identity elements of T/I;. Since Ng{(T)ZSNg(Z), the
subgroup R normalizes Z. Hence any element in Z—I;=Z—1I has at least
r—1 conjugates lying in Z, which implies |Z : I|=r and T=ZI,. Now we
have [T, R]cZ. Hence [T,R,S]=1 and [S, T, R]<Z. By the three-sub-
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group lemma we have [R, S, T]<Z. This implies that [R,S]< T by (2.6).
Hence, by (5.3.6) of [3], it follows that [S,R]=[S,R,R]<[T,R]<Z.
Again by the three-subgroup lemma, it follows, that R centralizes S, SJ.
Since Z is contained in [[S,$7, this is a contradiction. This proves that
Cg(2)is 2-closed.

Suppose that Z is not normal in G. Let z be an element of G such that
Z#+Z. Set I=Z=NZ and C=Cg(I). Consider an element ¢ in T - D. Then
the involution j is contained in Z-I by (2.4) and it is not conjugate in C
to ¢* by (3.2). By (4.1) of [5] there is an involution w in C which com-
mutes with j and %, and wj is conjugate in C to either j or #*, By the
earlier argument Cg(z?) is 2-closed with Sylow 2-group 7%, which implies
that w belongs to 7=N H. Suppose that wj is conjugate in C to j. Since wj
must be in Z by (3.2), the involution w is in T*NZ=2Z*NZ. Hence wj
and j are contained in Z- I, and they are conjugate in Ng(Z). But since
Ng(Z)/H is of odd order, this yields a contradiction. Now suppose that u{j
is conjugate in C to #%. Then wt=is conjugate in C to j, and we® is contal-
ned in Z= by (3.2). Thus the involution w is contained in T*—D?, and
Ce(w) is 2-closed with Sylow 2-group 7= This yields j&eT*NZ=Z*NZ=
I. But this is a contradiction.

This completes the proof of (3.4).

(38.5) The proposition (3.1) holds.
Proof. This follows from (3.3) and (3.4).

4. Identification With U,(q)

In order to complete the preof of our Theorem we will prove the follow-
ing result:
(4.1) If Ng(T) is not 2-closed, then G is isomorphic to Uy(q).

We assume in this section that Ng(T) is not 2-closed, and we try to ob-
tain a condition for H so that we can apply the Suzuki’s theorem to G.

(4.2) Ng(Q) is 2-closed with Sylow 2-group S.

Proof. As in (3.13) of [4] we can show that Z is characteristic in Q.
Since T is the only maximal elementary abelian subgroup of Q of order ¢*
by (2.3), it is characteristic in Q. These yields that Ng(Q) normalizes

both T and Z, and we have Nz(Q) SN;(S) by (2.8). Hence the assertion
holds.

(4.3) Ne(T)/T is a (TI)-group.
Proof. Let S, be a Sylow 2-group, #+ S, of Ng(T). By (2.3) the group
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Ne(T) NCg(Z(S;)) is 2-closed with Sylow 2-group S;, and this yields that
Cs(Z(8)))=8N5,. Since Z(S;)) €T, it follows from (2.1) that SNS; is ei-
ther equal to T or conjugate to @ by an element of P. Here, we use the fact
that @*NQ is either @ or T for any element & of P. Since S/T is abeli-
an, SNS; is normalized by both S and S;. Hence it follows from (4. 2) that
SN S, is equal to T.

(4.4) The extension of Ng(T) over T splits.

Proof. By the structure of S, the extension of § over T splits. Hence
the result follows from a theorem of Gaschiitz [17].

(4.5) Ng(T) contains subgroups L and K whichk satisfy the following pro-
perties:
(1) K is a complement of § in Ng(S) containing P,
(1) L is a complement of T in Ng(T) containing K, and
(i1i) L contains a normal subgroup L, isomorphic to Lo(qg?).

Proof. It is obvious that there is at least one subgroup K satisfying (1).
By (4.4) there is a complement L of T in Ng(T). Now it is easy to see
that SNL is a Sylow 2-group of L and that Ng(S) NL=N_(SNL). Hence
a complement of SNL in N,(SNL) is a complement of § in Ng(§), and
it is conjugate to K. Therefore, we may assume that L satisfies (ii). By
(4.3) the group L is a (TT)-group with an elementary abelian Sylow 2-
group of order ¢2. Hence it follows from (4.2) of [5] that L contains a
normal subgroup L, satisfying (iii).

(4.6) The group K normalizes cxactly two Sylow 2-groups S and S, of
Ne(T).

Proof. This follows from the property of L,(g?). See (4.3) of [5].

(4.7) Any two involutions of Z are conjugate in G.
In particular H=Cg(z) for any involution = of Z.

Proof. Let S, be a Sylow 2-group of Ng(7T') defined in (4.6). Then
Z(8:) is normalized by K, and it is contained in T by (2.7). By the str-
ucture of H, the subgroup R= {h;(1) : 21"1=1} of P acts semi-regularly on
T—Z. Since Z(S;) #Z and |R|=g—1, this implies that any two involutions
of Z(S;) are conjugate. Hence the result follows.

(4.8) The proposition (4.1) holds.

Proof. By (4.7) we can repeat the argument in [6] to obtain the result.
We remark that we can also use the Suzuki’s theorem introduced in Se-
ction 1. Since Ng(T) is not 2-closed, as in the proof of (4.7), there is a
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conjugate Z, of Z such that Z,#Z and Z,cT. By (2.4) and a theorem of
Glauberman [27], therefore, the cases (i) and (ii) of the Suzuki’s theorem
can not occur. Hence G must be isomorphic to U,(g).

Now the proof of our Theorem has been completed.
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