A Collection of Inequivalently Imbedded Arcs in n-Space

By Cho. Dall-Hoon

Seoul National University, Seoul, Korea

0. Introduction

The purpose of this thesis is to give an explicit construction of uncountably many arcs in the n-dimensional space, n>3, any two of which are not equivalently imbedded.

By suspending Sⁿ⁻¹ modulo an arc, we make three distinctly imbedded arcs in Sⁿ. Then we paste countably many copies of these arcs together and obtain many examples of arcs in the n-space. The construction procedure follows the routine method like that of [6]. However, we must be carefull in joining the building blocks because the geometrical vision is not so clear as in the 3-dimensional case.

1. Terminologies and Notaions

The unit n-simplex and the unit n-sphere are denoted by s" and S". Homeomorphic images of s" or S" are called n-cells or n-spheres, respectively. Two subsets A and B of a space S are called *equivalently imbedded* if they are homeomorphic and there is a pair homeomorphism from the pair (S, A) to (S, B), For $x \in A$ and $y \in B$, we say that A is equivalently imbedded at x as B is at y if there is a neighborhood U of x and a pair homeomorphism h from $(S, A \cap U)$ to $(S, B \cap h(U))$ with h(x) = y.

If A is a k-cell or k-sphere in an n-sphere S, and if there is a pair homeomorphism of (S, A) to (S'', B) with B a subpolyhedron of S'', then we say that A is *tame* in S. If A is an (n-1)-sphere and (S, A) is pair homeomorphic with (S'', S''^{-1}) , then we say A is *flat* in S. The notion of being locally tame or locally flat will then have obvious meaning.

Let A be a closed subset of a space X and let x be a limit point of X-A lying in A such that every neighborhood of x contains a neighborhood of x whose intersection with X-A is arcwise connected. We say that X-A is locally simply connected at x provided that if U is a neighborhood of x then there is a neighborhood V of x such that every simple closed curve in V-A is null homotopic in U-A. Trivially, the complement of a tame arc in the n-space, n>3, is locally simply connected at each point of the arc, and if there is a pair homeomorphism h from (X, A) to (Y, B) and X-A is locally simply connected at x then Y-B is so at h(x).

The suspension S(X) of a compact space X is the space obtained from $X \times I$ by collapsing down the compact sets $X \times 0$ and $X \times 1$ to points. The space X/σ is the quotient space of X by identifying an arc σ in X to a point.

2. The three arcs

Proposition A (Andrews-Curtis). If σ is an arc in S^{n-1} and D is a compact neighborhood of σ , then $S(D/\sigma)$ is topologically S(D). In particular, $S(S^{n-1}/\sigma)$ is an n-sphere.

Proof. By [1], $D/\sigma \times R^1$ and $D \times R^1$ are homeomorphic. Hence the proposition follows by taking the two point compactifications of $D/\sigma \times R^1$.

By Fox and Artin [6], there is an arc σ in S³ such that S³- σ is not simply connected. Then the arc in the 4-sphere S(S³/ σ) joining the suspension vertices through σ has non-simply connected complement as will be seen in Lemma 1 below. Since this type of induction works further, we obtain the following result which is originally proved by direct constructions in the n-space, $n \ge 3$ [2].

Proposition B (Antoine-Blankinship). For each $n \ge 3$, Sⁿ contains an arc whose complement is not simply connected.

Now suppose $n \ge 4$ and $1 \le \sigma$ be an arc in S^{n-1} contained in $S^{n-1} - S^{n-2}$ such that $S^{n-1} - \sigma$ is not simply connected. Throughout this paper, α will denote the arc in $S(S^{n-1}/\sigma)$ joining the suspension vertices through σ , that is, α is the part of $S(S^{n-1}/\sigma)$ corresponding to the subset $\sigma \times I$ of the product $S^{n-1}/\sigma \times I$. Let β be the subarc of β corresponding to $\sigma \times [0, \frac{1}{2}]$, and γ be the subarc of β corresponding to $\sigma \times [\frac{1}{4}, \frac{1}{2}]$.

Lemma 1. The arcs α , β and γ satisfy the followings

- (a) The complement of α is not simply connected.
- (b) The complement of β is simply connected.
- (c) The complement of γ is simply connected.

Proof. (a) Since $S(S^{n-1}/\sigma) - \alpha = (S^{n-1}-\sigma) \times (0,1)$ deformation retracts to $(S^{n-1}-\sigma) \times 0$, $S(S^{n-1}/\sigma) - \alpha$ has the same homotopy type as $S^{n-1}-\sigma$. This proves (a) since $S^{n-1}-\sigma$ is not simply connected.

- (b) $S(S^{n-1}/\sigma) \beta$ deformation retracts to the vertex $(\sigma, 1)$ by the map sending ((x, t), s) to (x, s(1-t)+t).
- (c) Let $f:S^1 \longrightarrow S(S^{n-1}/\sigma) \gamma$ be a loop then there is a positive number ε and a neighborhood U of σ in S^{n-1}/σ such that $f(S^1)$ does not meet $U \times (\frac{1}{2} \varepsilon, \frac{1}{4} + \varepsilon)$. By [3], there is a homeomorphism h sending $S^{n-1} \times (0, 1)$ onto $S^{n-1}/\sigma \times (\frac{1}{4} \varepsilon, \frac{1}{4})$. Let V be the component of $S(S^{n-1}/\sigma) h(S^{n-1} \times \frac{1}{2})$ containing $(\sigma, 0)$. Then the closure D of V is an n-cell by [3] and the distance δ between D-V and $S^{n-1}/\sigma \times [0, \frac{1}{2} \varepsilon]$ is positive.

Now if $f^{-1}(V) = \phi$ or $f^{-1}(V) = S^1$, f is null homotopic in $S(S^{n-1}/\sigma) - (V \cup \gamma)$ or in V. Otherwise, $f^{-1}(V) = U \mathcal{A}$ where \mathcal{A} is a collection of disjoint open arcs in S^1 , and by the

uniform continuity of f, a satisfies:

Diam $(f(A)) > \sigma$ for only finite A_1, A_2, \dots, A_k of α .

Since β cannot disconnect the (n-1)-sphere D-V. for each A_i , there is a continuous map $g_i:A_i\longrightarrow (D-V)-\beta$ such that g_i agrees with f on \bar{A}_i-A_i . And D is an n-cell and each f A_i is homotopic with g_i relative to A_i-A_i , so there is a continuous map $g:S^1\longrightarrow S(S^{n-1}/\sigma)-\beta$ with g homotopic to f in $S(S^{n-1}/\sigma)-\gamma$. By (b), g is null homotopic in $S(S^{n-1}/\sigma)-\beta$ and so is f in $S(S^{n-1}/\sigma)-\gamma$. This completes the proof.

Lemma 2. The complement of β is not locally simply connected at an end point of β .

Proof. Let $U=S^{n-1}/\sigma\times[0,\frac{1}{2})$ be a neighborhood of $(\sigma,0)$, then any neighborhood W of $(\sigma,0)$ in U contains a neighborhood V with $V-\beta=(S^{n-1}-\sigma)\times(0,\varepsilon)$, $\varepsilon>0$. Since the inclusions $V-\beta\subset U-\beta\subset S(S^{n-1}/\sigma)-\alpha$ are clearly homotopic, by lemma 1, $V-\beta$ contains a loop which is not null homotopic in $U-\beta$. Hence $W-\beta$ contains a loop not null homotopic in $U-\beta$.

Lemma 3. The complement of γ is locally simply connected at each endpoint of γ .

Proof. If U is a neighborhood of $(\sigma, \frac{1}{2})$ in $S(S^{n-1}/\sigma)$, there is a neighborhood W of σ in S^{n-1}/σ and an ε such that $V=W\times [\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon]\subset U$, $0<\varepsilon<\frac{1}{4}$. Here we may suppose W is small enough so that an n-cell D containing $W\times (\frac{1}{2}+\varepsilon)$ is contained in $U-\gamma$, $V-\gamma$ deformation retracts to $W\times (\frac{1}{2}+\varepsilon)$, and eacth loop in $V-\gamma$ is null homotopic in $(V-\gamma)\cup D\subset U-\gamma$. Thus $S(S^{n-1}/\sigma)-\gamma$ is locally simply connected at $(\sigma,\frac{1}{2})$. Similarly, it is locally simply connected at the other end point.

3. The Main Result

Since the arc σ is contained in $s^{n-1}-S^{n-2}$, it follows from Proposition A that $S(s^{n-1}/\sigma)$ is an n-cell and the boundary $S(S^{n-2})$ is a flat (n-1)-sphere in $S(S^{n-1}/\sigma)$ whose intersection with α is the two end points of α . Let $R^n \cup \infty$ be the one point compactification of R^n , h be a pair homeomorphism of $(S(S^{n-1}/\sigma), S(s^{n-1}/\sigma))$ to $(R^n \cup \infty, I^n)$ and let $p=h((\sigma,1))$, $q=h((\sigma,\frac{1}{2}))$. Since the arc $h(\beta)$ cannot disconnect I^n , there is a polygonal arc K_1 from p to p_1 such that

- (i) K_i lies in $I''-h(\beta)$, and
- (ii) p₁ lies in the 2⁻¹-neighborhood of q.

Similarly, there is a polygonal arc K₂ from p₁to p₂ such that

- (i) K_2-p_1 lies in $I''-h(\beta) \cup K_1$, and
- (ii) p₂ lies in the 2⁻²-neighborhood of q.

Continuing, we obtain an arc K from p to q which is the union of K_1, K_2, \dots , and q. By Cantrell and Edwards [5], the almost polygonal arc K is tame and there is a self homeomorphism g of $R^n \cup \infty$ sending K to a polygonal arc. Let F be a continuous map of $R^n \cup \infty$ onto itself such that the restriction of F on $R^n \cup \infty - g(K)$ is a homeomorphism, Fg(K) is a point and F is the identity on $gh(\beta)$.

The image under this map F of the flat (n-1)-sphere $gh(S(S^{n-2}))$ is a topological (n-1)-sphere which is locally flat possibly except at $Fgh((\sigma, \frac{1}{2}))$. Therefore, it is flat by Cantrell [4] and $Fgh(S(s^{n-1}/\sigma))$ is an n-cell [3]. Thus $E=h^{-1}g^{-1}Fgh(S(s^{n-1}/\sigma))$ is n-cell containing β such that the boundary of E meets β at the and points of β .

Hence we have proved the following;

Propostion C. There is an n-cell E containing β such that the boundary of E meets β at the end points of β .

Similarly, there is an n-cell D containing α such that the boundary of D meets α at the end points of α .

Now let D_k , $k=1, 2\cdots$, denotes the set of those points $x=(x_1, x_2\cdots, x_n)$ in the unit n-simplex s^n with $1-2^{-(k-1)} \le x_n \le 1-2^{-k}$. And let f_k denote the obvious linear homeomorphism of s^n to that part of s^n contained in the half space $1-2^{-(k-1)} \le x_n$ which projects the base simplex s^{n-1} into the hyperplane $x_n=1-2^{-(k-1)}$ towards the vertex $e_n=(0,0,\cdots,0,1)$. Then f_k sends D_1 onto D_k . Let v_1 be the barrycenter of s^{n-1} , and let $v_k=f_k(v_1)$, $k\ge 2$.

Using Proposition C, let \hat{o}_0 and \hat{o}_1 be ares joining v_1 to v_2 in D_1 such that (D_1, \hat{o}_0) and (D_1, \hat{o}_1) are pair homeomorphic with (D, α) and (E, β) , respectively. Now let C be the set of all $\{0, 1\}$ -valued sequences.

For an element c of C. we construct an are δ_c as follows; for each k, let $\delta_{c,k}$ be the are f_k (δ_0) or f_k (δ_1) according to as c(k) is 0 or 1. Then δ_c is the union of $\delta_{c,1}$, $\delta_{c,2}$, ..., and the vertex e_n .

Theorem. If c and c' are distinct members of C, then δ_c and δ_c' are not equivalently imbedded in S".

Proof. Since $\delta_{\epsilon,k}$ is imbedded in S'' as α or β is in $S(S^{n-1}/\sigma)$, the subarcs of δ_{ϵ} joining v_* to e_* has complement which is not locally simply connected at v_* by lemma 2. On the other hand, if x is a point of δ_{ϵ} not equal to any of the points e_* , v_1 , v_2 , ..., then by lemma 3 the subarce of δ_{ϵ} from x to e_* has complement which is locally simply connected at x.

Hence if there is a pair homeomorphism H of (s", δ_c) to (S", δ_c) then H must send the set $Z = \{e_n, v_1, v_2, \cdots\}$ onto Z. Put, since any self homeomorphism of the interval I is either order preserving or order reversing, this implies that H sends each v_k to v_k as e_n is the only limit point of Z. Thus existence of a pair homeomorphism between(S", δ_c) and (S", δ_c) implies that each $\delta_{c,k}$ is equivalently imbedded with $\delta_{cr,k}$ in S", However, if this is the case, then c=c, because α and β are not equivalently imbedded in $S(S^{n-1}/\sigma)$ by lemma 1. This completes the proof.

Note finally that, since C is equipotent with reals, we have constructed an uncountably infinite collection of inequivalently imbedded ares in n-space.

REFERENCES

- [1] J. J. Andrews and M. L. Curtis(1962), n-space modulo an are, Ann. of Math. 75.
- [2] W. A. Blankinship (1951), Ceneralization of a construction of Antoine, Ann. of Math. 53.
- [3] M. Brown (1960), A proof of Generalized Scheonflies Theorem, Bull. A.M.S. 66.
- [4] J. C. Cantrell (1963), Almost locally flat imbeddings of S"-1 in S", Bull. A.M.S. 69.
- [5] J. C. Cantrell and C. H. Edwards, Jr. (1963), Almost locally polyhedral curves in Eucliden n-space, *Trans. A. M. S.* 107.
- [6] R.H. Fox and E. Artin(1948), Some wild cells and spheres in the three-dimensional space, Ann. of Math. 49.