A Note On Injectivity Of Unital Modules

By Doo Ho Kim

Kang Won National University, Choon Chun, Korea.

1. Introduction.

In this paper we investigate for injectivity of a unital module M_R by using the Baer's injectivity condition; " M_R is u-injective if and only if for any right ideal I of R and each $f \in \operatorname{Hom}_R(I, M)$ there exists $m \in M$ such that f(x) = mx for any $x \in I$ ". We define the following.

(1) S is a nonempty subset of a ring R and M_R is a right R-module

$$_{R}S = \{r \in R \mid Sr = 0\}$$

$$_{M}S = \{x \in M \mid xS = 0\}$$

- (2) If R is a ring with unit 1 and for any $x \in M$, $x_1 = x$, then M_x is a unital module.
- (3) A unital module M_R is a u-injective module in case each unital module B_R has the following properties that if A_R is a submodule of B_R , then any $f \in \text{Hom}_R(A, M)$ can be induced by an element $g \in \text{Hom}_R(B, M)$.
- (4) I is a right ideal of a ring R, unital module M_R is 1-complete if for any $f \in \text{Hom}_R(I, M)$ there is an element $m \in M$ such that f(x) = mx for every $x \in I$.

2. Injectivity of a unital module

Theorem 1. Let M_R be a unital module. For every $x \in R$, $M(R^2) \subset Mx$ if and only if M_R is xR-complete.

Proof. (Necessity) We assume $_{M}(_{R}x)\subset Mx$. If $f\in Hom_{R}(xR, M)$, then for any $r\in_{R}x$ f(x)r=f(xr)=f(0)=0

Hence $f(x) \in_M (_R x) \subset Mx$. And so there is a $m \in M$ such that f(x) = mx. For every $y = xr \in xR$

$$f(y) = f(xr) = f(x)r = (mx)r = m(xr) = my$$

Therefore M_R is xR-complete.

(Sufficiency). Let $y \in_M(_R x)$ and we define $f: xR \to M$ as f(xr) = yr. If $xr_1 = xr_2$, then $x(r_1 - r_2) = 0$ and so $r_1 - r_2 \in_R x$. Therefore $y(r_1 - r_2) = 0$, that is,

$$f(xr_1)=f(xr_2)$$
.

Hence $f:xR \to M$ is a mapping. Next for any $xr_1, xr_2 \in xR, r \in R$

$$f(xr_1+xr_2)=f(x(r_1+r_2))=y(r_1+r_2)=yr_1+yr_2=f(xr_1)+f(xr_2).$$

$$f((xr_1)r) = f(x(r_1r)) = y(r_1r) = (yr_1)r = f(xr_1)r$$

This proves $f \in Hom_R(xR, M)$. And for any $xr \in xR$, there is $m \in M$ such that f(xr) = m(xr). In particular $y = y1 = f(x1) = m(x1) = mx \in Mx$. That is, $M(Rx) \subseteq Mx$.

Corollary. M_R is a unital module and $_R x = 0$ for $x \in R$, $x \ne 0$, Mx = M if and only if M_R is xR-complete.

Proof. (Necessity) $_{M}(_{R}x) \subset M = Mx$

For any $f \in \text{Hom}_R(xR, M)$, there exists $m \in M$ such that f(y) = my for any $y \in xR$ by Theorem 1. Therefore M_R is xR-complete.

(Sufficiency)
$$_{R}x = \{x \in R \mid xr = 0\} = \{0\}$$

And so $_{M}(_{R}X) = M$

And by Theorem 1, $_{M}(_{R}x)\subset Mx$. That is $M\subset Mx$. Therefore M:=Mx.

Theorem 2. M_R is a unital module. Then M_R is u-injective if and only if M_R is an injective unital module.

Proof. (Necessity) For any R-module B_R we define $B^1 = B1$ and $B^0 = \{x \in B \mid x1 = 0\}$. Then B^1 and B^0 are submodules of B, since for any x1, $y1 \in B^1$, $r \in R$,

$$x_1-y_1=(x-y)_1$$
, $(x_1)_r=x(1_r)=x(r_1)=(x_r)_1\in B^1$

And for any $x, y \in B^0$, $r \in R$

$$(x-y)1=x1-y1=0-0=0$$

hence $x-y \in B^0$. And

$$(xr)1=x(r1)=x(1r)=(x1)r=0r=0$$

hence xr∈B°.

For any $x \in B^1 \cap B^0$, there is a $y \in B$ such that x=y1 and x1=0, therefore x=y1=(y1)1 =x1=0 so that $B^1 \cap B^0=0$. For any $x \in B$, if $x1 \neq 0$, then

$$(x-x_1)_1=x_1-x_1=0$$
 and so $x-x_1\in B^0$

And $x=x1+(x-x1)\in B^{\tau}\oplus B^{\sigma}$

If $x_1=0$, then $x \in B^0$ and so $x=0+x \in B^1+B^0$. Therefore $B=B^1 \oplus B^0$. And B^1 is a unital module because for any $x \in B^1$, there is $y \in B$ such that $x=y_1$ and $x=y_1=(y_1)_1=x_1$. Let A_R be any submodule of B_R . Then there exist submodules of A such that $A=A^1 \oplus A^0$ where A^1 is a unital submodule of B^0 . Let $f \in Hom_R(A, M)$, and define $f' \in Hom_R(A^1, M)$ as $f'(a_1)=f(a_1)$. Then there is $g' \in Hom_R(B^1, M)$ such that $g' \mid A^1=f'$ (by hypothesis) Now we define a mapping

$$g: B \rightarrow M$$
 as $g(x_1 + x_0) = g'(x_1)$

Then for any $a=a_1+a_0 \in A$

$$f(a_0)=f(a_0)1=f(a_01)=f(0)=0$$

Hence $g(a_1+a_0)=g'(a_1)=f'(a_1)=f(a_1)=f(a_1)+0=f(a_1)+f(a_0)=f(a_1+a_0)$. And for any $x, y \in B$, $r \in R$,

$$g(x+y)=g((x_1+x_0)+(y_1+y_0))=g((x_1+y_1)+(x_0+y_0))$$

= $g'(x_1+y_1)=g'(x_1)+g'(y_1)=g(x_1+x_0)+g(y_1+y_0)$

$$= g(x) + g(y).$$

$$g(xr) = g((x_1+x_0)r) = g(x_1r+x_0r) = g'(x_1r) = g'(x_1)r = g(x_1+x_0)r$$

$$= g(x)r$$

So that $g \in Hom_{\mathfrak{g}}(B, M)$ and $g \mid A = f$.

(Sufficiency) By definition of u-injectivity if M_R is unital injective, then M_R is u-injective.

Corollary. Let V be a finite dimensional vector space over a field K. Then V_K is injective unital.

Proof. Let A_K be a submodule of any unital module B_K . And let $\{a_1, a_2, \dots, a_r\}$ be a basis of A_K . Since $\{a_i\}$ is linearly independent, it can be extended to a basis of B, say $\{a_1, \dots, a_r, c_1, \dots, c_r\}$, Let C be the submodule of B generated by $\{c_1, \dots, c_r\}$. Since $\{a_i, c_i\}$ generates B, B=A+C. On the other hand, $A \cap C = \{0\}$. Accordingly, $B=A \oplus C$. For any $f \in Hom_K(A, V)$, we define $g: B \to V$ as g(a+c)=f(a). Then for any a_1+c_1 , $a_2+c_2 \in B$, $h \in K$ if $a_1+c_1=a_2+c_2$, then $a_1-a_2=c_2-c_1$. And since $A \cap C = \{0\}$, $a_1-a_2=c_2-c_1=0$. Hence $a_1=a_2$, $f(a_1)=f(a_2)$. Therefore,

$$\begin{split} g(a_1+c_1) &= g(a_2+c_2) \\ g((a_1+c_1)+(a_2+c_2)) &= g((a_1+a_2)+(c_1+c_2)) \\ &= f(a_1+a_2) \\ &= f(a_1)+f(a_2) = g(a_1+c_1)+g(a_2+c_2), \\ g((a_1+c_1)h) &= g(a_1h+c_1h) = f(a_1h) = f(a_1)h = g(a_1+c_1)h \end{split}$$

Accordingly $g \in \text{Hom}_{\kappa}(B, V)$ with $g \mid A = f$. Hence V_{κ} is u-injective, by Theorem 2, it is injective.

3. Some results

And

Let R be an integral domain with unit and M_R is unital. Then M_R is divisible if and only if M_R is xR-complete. And if R is a principal right ideal ring and integral domain, then by Bacr's injectivity condition we know that M_R is u-injective if and only if M_R is xR-complete. By Theorem 2, if R is a principal right ideal ring and integral domain, then M_R is injective unital module if and only if M_R is xR-complete. Consequently we know that if R is a principal right ideal ring and integral domain, then M_R is injective unital module if and only if M_R is divisible. For example, a Z-module G is injective if and only if it is divisible. So the concepts "injective" and "divisible" are equivalent for abelian groups. The group Q, consisting of the rational numbers modulo integer, is a Z-injective module.

REFERENCES

(1) Auslender and Buchshaum; 1974, *Groups*, *Rings*, *Modules*, Harper & Row, New York pp. 308—309.

- [2] Carl Faith; 1967, Injective Modules and Quotient Rings, Springer, Heidelberg pp. 5—12.
- (3) D.G. Northcott; 1966, An introduction to homological Algebra, Cambridge pp. 67--89
- [4] Sze-tsen Hu; 1968, *Introduction to Homological Algebra*, Holden-Day, San Francisco pp. 83-87.