On The Relation Between Extensions Of Topologies And Quasi-uniformities

By Joo Ho Kang

Korea Social Work College, Tae Gu, Korea

1. Introduction

In this paper, we shall investigate the answers to the following questions;

- i) Let Q be the some property of the quasi-uniformity. If (X, \mathfrak{U}) has the property Q, under what conditions will the extension of the quasi-uniformity also have the property Q?
- ii) Let (X, \mathfrak{F}) be a topological space and \mathfrak{U} be the PERVIN's quasi-uniformity by the topology \mathfrak{F} . Them can the topology generated by the extension quasi-uniformity of PERVIN's quasi-uniformity \mathfrak{U} be represented by LEVIN's simple extension of the given topology \mathfrak{F} ?
- Let (X, \mathfrak{U}) be a quasi-uniform space and let A be a given subset of X. We consider the smallest quasi-uniformity which contains the quasi-uniformity \mathfrak{U} and $\{A \times A \cup A' \times A'\}$, and will define this smallest quasi-uniformity which contains the quasi-uniformity as an extension of quasi-uniformity \mathfrak{U} .

2. Main results

Definition 2.1. Let (X, \mathbb{I}) is a quasi-uniform space. Let $\mathcal{L} = \{U \cap (A \times A \cup A' \times A') : U \in \mathbb{I}\}$ and \mathbb{I}^* be a quasi-uniformity with \mathcal{L} as base. Then \mathbb{I}^* is called an *extension* of \mathbb{I} . In this case we write $\mathbb{I}^* = \mathbb{I}(A)$.

For a subset A of a topological space X, A' denotes the complement $X \sim A$ of A. $\mathfrak{J}(\mathfrak{U}(A))$ denotes the quasi-uniform topology of the quasi-uniformity $\mathfrak{U}(A)$.

Let (X, \mathfrak{F}) be a topological space and let \mathfrak{U} be PERVIN's quasi-uniformity by the topology \mathfrak{F} . $\mathfrak{U}(A)$ is the extension of \mathfrak{U} and \mathfrak{F} ($\mathfrak{U}(A)$) is the quasi-uniform topology of the quasi-uniformity $\mathfrak{U}(A)$.

Lemma 2.2 (a) A is cl-open (closed and open) in $(X, \Im(\mathfrak{U}(A)))$

- (b) $\{0 \cap A, \ 0 \cap A' : 0 \in \mathfrak{F}\}\$ is a base for $\mathfrak{F}(\mathfrak{U}(A))$.
 - Proof. (a) is obvious.
- (b) Let $0 \in \mathfrak{J}(\mathfrak{U}(A))$. Then for every $x \in 0$, there exists U in \mathfrak{U} such that $(U \cap (A \times A \cup A' \times A'))(x) \subset 0$. If $x \in A$, then $U(x) \cap A \subset 0$. Hence there exists O_x in \mathfrak{J} such that $x \in O_x$

and $O_x \cap A \subset U(x) \cap A \subset O_x$. If $x \in A'$, then $U[x] \cap A' \subset O$. Hence there exists O_x in \Im such that $x \in O_x$ and $O_x \cap A' \subset U[x] \cap A' \subset O$. Hence $\{O \cap A, O \cap A' : O \in \Im\}$ is a base for $\Im(\mathfrak{U}(A))$.

Theorem 2.3. $\mathfrak{F}(\mathfrak{U}(A)) = \mathfrak{F}(A)(A')$.

Proof. By lemma 2.2, $\Im(\mathfrak{U}(A)) \subset \Im(A)(A')$.

Let $O^*=O_1 \cup (O_2 \cap A)$ and $O^{**}=O_3 \cup (O_4 \cap A)$ for $O_1, O_2, O_3, O_4 \in \mathfrak{J}$.

Then $O^* \cup (O^{**} \cap A') = O_1 \cup (O_2 \cap A) \cup (O_3 \cup A')$.

Therefore by lemma 2.2, $O^* \cup (O^{**} \cap A') \in \mathfrak{J}(\mathfrak{U}(A))$.

Hence $\mathfrak{J}(\mathfrak{U}(A))\supset\mathfrak{J}(A)(A')$. Thus $\mathfrak{J}(\mathfrak{U}(A))=\mathfrak{J}(A)(A')$.

We obtain the following lemma from lemma 2.2.

Lemma 2.4. $(A, \Im \cap A) = (A, \Im (\mathfrak{U}(A)) \cap A)$. $(A', \Im \cap A') = (A', \Im (\mathfrak{U}(A)) \cap A')$.

Theorem 2.5. Let A and A' be the subspaces of the space (X, \mathfrak{F}) and let \mathfrak{F}_2 be the weak topology determined by $\{A, A'\}$. Then $\mathfrak{F}^*=\mathfrak{F}(\mathfrak{U}(A))$.

We obtain the following corollary from lemma 2.4 and theorem 2.5.

Corollary 2.6. $(X, \mathfrak{F}(\mathfrak{U}(A)))$ has the property P iff $(A, \mathfrak{F} \cap A)$ and $(A', \mathfrak{F} \cap A')$ have the property P, where P is $T_i(i=0,1,2)$, regular, completely regular, normal, compact, countably compact, Lindelöf and separable.

Lemma 2.7. In definition 2.1, \mathfrak{L} is a base for some quasi-uniformity.

Proof. (a) Since $\Delta \subset U$ and $\Delta \subset A \times A \cup A' \times A'$ for every $U \in \mathbb{U}$, $\Delta \subset \widetilde{U}$ for every $\widetilde{U} \in \mathfrak{L}$.

- (b) Let $\tilde{U}=U\cap (A\times A\cup A'\times A')$. Then since $U\in \mathbb{N}$, there exists V in \mathbb{N} such that $V\circ V\subset U$. Let $\tilde{V}=V\cap (A\times A\cup A'\times A')$, then $\tilde{V}\circ \tilde{V}\subset \tilde{U}$.
- (c) For \tilde{U} , $\tilde{V} \in \mathfrak{L}$, let $\tilde{U} = U \cap (A \times A \cup A' \times A')$ and $\tilde{V} = V \cap (A \times A \cup A' \times A')$. Then $\tilde{U} \cap \tilde{V} = (U \cap V) \cap (A \times A \cup A' \times A')$. Since $U \cap V \in \mathfrak{U}$.

Theorem 2.8. If (X, \mathfrak{U}) is pseudo metrizable, then $(X, \mathfrak{U}(A))$ is pseudo metrizable.

Proof. Let $\mathcal{A} = \{U_i\}$ be a countable base for the quasi-uniformity \mathfrak{U} . Then $\{U_i \cap (A \times A \cup A' \times A') : U_i \in \mathcal{A}\}$ is a countable base for the quasi-uniformity $\mathfrak{U}(A)$.

Theorem 2.9. $(X, \mathfrak{U}(A))$ is precompact iff (X, \mathfrak{U}) is precompact such that for each \cup in \mathfrak{U} there exists a finite subset F^v of X such that $U[F^v] = X$, $F^v \cap A \neq \phi$ and $F^v \cap A' \neq \phi$.

Proof. Suppose(X, $\mathfrak{U}(A)$) is precompact. Let $U \in \mathfrak{U}$. Then $U \cap (A \times A \cup A' \times A') \subset U$. Since $(X, \mathfrak{U}(A))$ is precompact, there exists a finite subset F of X such that

 $(U \cap (A \times A \cup A' \times A'))[F] = U[F] \cap ((A \times A)[F] \cup (A' \times A')[F]) = X.$

Thus U[F]=X. Here $F \cap A \neq \emptyset$, $F \cap A' \neq \emptyset$.

If $F \cap A = \phi$, since $(A \times A)[F] = \phi$, $(U \cap (A \times A \cup A' \times A'))[F] = U[F] \cap A' \neq X$. If $F \cap A' = \phi$, since $(A' \times A')[F] = \phi$, $(U \cap (A \times A \cup A' \times A'))[F] = U[F] \cup A \neq X$.

Suppose (X, \mathfrak{U}) is precompact such that for each U in \mathfrak{U} there exists a finite subset F^{ν} of X such that $U[F^{\nu}] = X$, $F^{\nu} \cap A \neq \phi$ and $F^{\nu} \cap A' \neq \phi$. Let $\tilde{U} \in \mathfrak{U}(A)$.

Then there exists a member U of \mathbb{I} such that $U \cap (A \times A \cup A' \times A') \subset \tilde{U}$.

Since $U \in \mathcal{U}$, there exists a finite subset F^v of X such that $U[F^v] = X$, $F^v \cap A \neq \phi$ and $F^v \cap A' \neq \phi$. Since $(U \cap (A \times A \cup A' \times A'))$ $[F^v] = U[F^v] \cap ((A \times A)[F^v] \cup (A' \times A')[F^v]) = X \cap (A \cup A') = X$ and $(U \cap (A \times A \cup A' \times A'))$ $[F^v] \subset \tilde{U}[F^v]$, $\tilde{U}[F^v] = X$.

Theorem 2.10. Let (X, \mathfrak{U}) be a complete uniform space and let (X, \mathfrak{T}) be a T_2 -space. $\mathfrak{U}(A)$ is the extension of the quasi-uniformity \mathfrak{U} . Where \mathfrak{F} is the topology of the quasi-uniformity \mathfrak{U} . Then (a) If $A \in \mathfrak{F}$, then $(X, \mathfrak{U}(A))$ is complete iff if Cauchy filter \mathfrak{F} in $(X, \mathfrak{U}(A))$ converges to a point of A' with respect to \mathfrak{F} , then $A' \in \mathfrak{F}$.

- (b) If $A' \in \mathfrak{J}$, then $(X, \mathfrak{U}(A))$ is complete iff if Cauchy filter \mathfrak{F} in $(X, \mathfrak{U}(A))$ converges to a point of A with respect to \mathfrak{J} , then $A \in \mathfrak{F}$.
- (c) If A is not open and not closed in (X, \mathfrak{F}) , then $(X, \mathfrak{U}(A))$ is complete iff if Cauchy filter \mathfrak{F} in $(X, \mathfrak{U}(A))$ converges to a point of A with respect to \mathfrak{F} then $A \in \mathfrak{F}$, and if Cauchy filter \mathfrak{F} in $(X, \mathfrak{U}(A))$ converges to a point of A' with respect to \mathfrak{F} then $A' \in \mathfrak{F}$.

Proof. (a) Only if: Let \mathfrak{F} be Cauchy filter in $(X, \mathfrak{U}(A))$ and converge to a point x in A' with respect to \mathfrak{F} . Then since $(X, \mathfrak{U}(A))$ is complete, \mathfrak{F} converges to a point y with respect to \mathfrak{F} $(\mathfrak{U}(A))$.

In fact, \mathfrak{F} converges to y with respect to \mathfrak{F} since $\mathfrak{F}\subset\mathfrak{F}(\mathfrak{U}(A))$. Since (X,\mathfrak{F}) is T_2 -space, x=y. Hence $A'\in\mathfrak{F}$.

If: Let \mathfrak{F} be a Cauchy filter in(X, $\mathfrak{U}(A)$). Then \mathfrak{F} is a Cauchy filter in(X, \mathfrak{U}) since $\mathfrak{U} \subset \mathfrak{U}(A)$. Since (X, \mathfrak{U}) is complete, \mathfrak{F} converges to a point x_0 in (X, \mathfrak{F}) .

In fact \mathfrak{F} converges to x_0 for $\mathfrak{F}(\mathfrak{U}(A))$ because if $x_0 \in A'$, then $O \cap A'$ is a member of \mathfrak{F} for O containing x_0 since $A' \in \mathfrak{F}$.

Lemma 2.11.
$$(A, \mathfrak{U} \cap A \times A) = (A, \mathfrak{U}(A) \cap A \times A)$$

 $(A', \mathfrak{U} \cap A' \times A') = (A', \mathfrak{U}(A) \cap A' \times A')$

Definition 2.12. A quasi-uniform space (X, U) is quasi-uniformly locally compact iff there is a member U of U such that U (x) is compact for each x in X.

Theorem 2.13. $(X, \mathbb{U}(A))$ is quasi-uniformly locally compact iff there exists $\tilde{\mathbb{U}}$ in U(A) such that $(\tilde{\mathbb{U}} \cap A \times A)[x]$ is compact in $(A, \Im \cap A)$ and $(\tilde{\mathbb{U}} \cap A \times A)[x]$ is compact in $(A', \Im \cap A')$.

Proof. Only if: Since $(X, \mathfrak{U}(A))$ is quasi-uniformly locally compact, there exists \tilde{U} in $\mathfrak{U}(A)$ such that $\tilde{U}[x]$ is compact in $(X, \mathfrak{J}(\mathfrak{U}(A)))$ for every x in X. By lemma 2.11,

 $\tilde{\mathbb{U}} \cap A \times A \in \mathbb{U} \cap A \times A$ and $\tilde{\mathbb{U}} \cap A' \times A' \in \mathbb{U} \cap A' \times A'$. By lemma 2.2 and lemma 2.4, $(\tilde{\mathbb{U}} \cap A \times A)[x] = \tilde{\mathbb{U}}[x] \cap A$ is compact in $(A, \Im \cap A)$ for $x \in A$ and $(\tilde{\mathbb{U}} \cap A' \times A')[x] = \mathbb{U}[x] \cap A'$ is compact in $(A', \Im \cap A')$ for $x \in A'$.

If: Let $(\tilde{U} \cap A \times A)[x]$ be compact in $(A, \Im \cap A)$ for $x \in A$ and $(\tilde{U} \cap A' \times A')[x]$ be compact in $(A', \Im \cap A')$ for $x \in A'$. Let $\tilde{U}^* = \tilde{U} \cap (A \times A \cup A' \times A')$. Then $U^* \in \mathcal{U}(A)$, $\tilde{U}^*[x] = \tilde{U}[x] \cap A$ for $x \in A$ and $\tilde{U}^*[x] = \tilde{U}[x] \cap A'$ for $x \in A'$. Since $\tilde{U}[x] \cap A$ is compact in $(A, \Im \cap A)$ and $\tilde{U}[x] \cap A'$ is compact in $(A', \Im \cap A')$, $\tilde{U}^*[x]$ is compact in $(X, \mathcal{T}(u(A)))$ for every $x \in X$.

REFERENCES

- (1) S. Willard, (1970) General Topology, Addison-Wesley.
- (2) J. L. Kellely (1955) General Topology, D. VAN Nostrand.
- (3) J. Dugundji, (1966) Topology, Allyn and Bacon, Boston.
- (4) N. Levine: (1964) Simple extensions of topologies, Amer. Math. Monthly, 71.
- (5) W. J. Pervin, (1962) Quasi-uniformization of topological spaces, *Math.*, *Annalen*, 147, 316-317
- (6) W. J. Pervin, (1962) Uniformization of neighbourhood axioms, *Math. Annalen* 147, 313-315