Dynamics of Heterogeneous Warfare
Kyung Soo Park*

There have been many modeling attempts in the past to formulate combat
operations analytically. Any attempt to formulate the problem mathematically
necessarily leaves out many relevant factors. The attempt is nevertheless
illuminating, for two reasons. First, it provides an insight into the effect of
various weapon systems characteristics and tactical strategies on the outcome
of a hypothetical warfare. Second, it suggests what parameters need to be
measured to understand the dynamics of a warfare.

One of the earliest examples of military operational research is Lanches-
ter’s study of combat. Later, Koopman extended Lanchester’s results and
suggested a reformulation of the problem in stochastic form [7]. Since then
many researchers refined and extended the fundamental model to study the
microscopic aspect of a duel such as firing rates of the duelists, varying
single-shot kill probability of the rounds [2], and other situational character-
istics such as ammunition limitation [1], surprise [9], cover and conceal-

ment 3], etc..

In the probabilistic development of the fundamental Lanchester theory,
some of the desired results are (1) the probability that having started with
%o and Yo units, x and ¥y units will be still in operation a time ¢ later and

(2) probability that x wins [4,9].

* Associate Professor, Department of Industrial Science, Korea Advanced Institute of Science. The
author wishes to express appreciation to Lt. Col. Tai Y. Kwon, Maj. Young S. Bai of the R.O.K.
Army and Maj. Dae U. Kim of the R.O.K. Air Force for their helpful discussions with the author
on the underlying assumptions of the area firing process treated in this article.



66 L =

The difficulties encountered in the stochastic analysis of combat are
generally of a computational nature. It may be possible to solve the partial
difference-differential equations that arise, but the solutions are not especially
useful. What seems to be required is a simple measure of effectiveness of

the correct result.

Theory of fundamental duels provides an invaluable macroscopic insight
into the role played by the basic parameters and combat strategies. However,
frequently more than one kind of weapon system is employed by each side
let alone the differential performances among the weapons of one type.

One of the approaches to tackle the problem of heterogeneity is a
discrete-event computer simulation. Fain, et al (57, divided the forces into
offensive units and defensive units. The simulation program treats attrition of
the engaged units by Lanchester-like equations. The attrition rate suffered by a
unit is proportional to the fire power directed against it by opposing offensive
units with which it is engaged.

Generally, the formulation of a simulation model often requires consideration
of more details than necessary in an analytic model, some of which might
not be crucial for the analysis of the problem. Analytic model is more
explicit about the relations between parameters, and can provide important
Iknowledge on how results depend on certain parameter combinatiéns. |

Several authors including Weiss [8] considered various cases of hetero-
geneous forces. In most cases, it is assumed that the attrition expressions are
deterministic and of a linear form. Under this assumption, a generalized
Lanchester-type square law holds for the heterogeneous case. The linear
attrition expression applies to the situation where fire is shifted to a new
target when a target is destroyed, or the area held is released progressively
as the force dwindles in size so that the density of the forces in the area

remains constant [37,

Statement of the Problem

Two forces, X and Y, both with heterogeneous multiple weapon systems
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engage in combat. Each weapon with given characteristics fires at a given
rate, which is assumed to correspond to a Poisson stream. It is assumed that
there are no replacements, so that the only changes in the strengths of the
forces are decrements.

Each force has information about the general areas in which opposing
units are located. Indirect, area fire is used by both sides which defend their
area occupied initially so that density of the forces in the area decreases as
the battle progresses. Thus neither side concentrates fire on the opponent
survivors.

Depending on the availability of spontaneous information on the current
enemy status, each participating unit may follow (1) a prescribed attack
pattern in terms of the fraction of the available units (or the fraction of fire
from the available units) allocated to various enemy targets, or (2) an
adaptive attack pattern depending on the enemy status at that time,

As the struggle goes on, the number of survivors on the two forces will
tend to diminish. If the total number of a force reaches =zero, the other
force is said to win the battle. However, for the heterogeneous weapons "
systems, there can be a stalemate depending on the two forces’ weapon
allocation strategies, which is generally determined from the information on
the current enemy status.

The problem addressed in this paper is to determine the expected number

of survivors of various weapon types at any given time,

Formulation and Solution of the Problem

The problem proposed in the preceding section can be described more

accurately with the following symbols:

xi:xi(t)

=number of weapons, type ¢ of side X, at time 7; (1<i<M)
2i=2:(t) |

—number of weapons, -type j of side Y, at time ¢; (1=j<N)
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N
=fraction of x; allocated to targets y; (Z %;‘J.:I)
i1

%gi:%;i(xl(t% xz(t)) seey xM(t)’ £)

=

M
=fraction of y; allocated to targets x; (Z %% = )
1

ri=firing rate of each x;
r;=firing rate of each y;

77;=single-shot kill probability (expected rate at which a weapon system
can destroy targets) of each x; firing on single “y,”
73;=single-shot kill probability of each y; firing on single “x,”
To formulate the problem the following state probabilities are defined:

07 (m,t) =Prob {x;(£) =m}

pi(n,ty=Prob{y;(t)=n}
Then, by definition the expected number of survivors of various weapon

types for both sides are:

_ x:(0)

x ()= L mepi (m1); 1<i<M (1)
and

_ ¥i(0)

riO= L n-pi(n); 1<j<N (2)

Furthermore, the following transition probabilities are defined based on
the assumption that all weapon sysitems are deployed over the geographical area in
such a way that the chance of multiple destruction from a single enemy shot is
negligible:

Apixi(m,t)dt=Prob {x;(t+dt) =m|x;(£) =m—1}.
In addition to this basic assumption, also note that the probability of more

than two enemy weapons firing simultaneously in a small time interval dt approa-
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ches zero as dt approaches 0 because each weapon’s firing process is independent
of the other’s.

Connecting the various state probabilities at time ¢ and t+dt, the following
difference-differential equation is obtained describing the attrition of X force.
pr(mt4de)y=pF(m+1,8). ApT (m+1, 1) di+pF(m,0) -[1-4p7(m,t)dt]
+0(dt);  0<m<x;(0)—1
—pF(m, 1) [1—4p7(m,t)dt]+0(dt);  m=x:(0) 3)
But

x A one out of m “x;” killed
4p; <m,t>dz—j;1Prob{ o )

& um one out of m “x;” killed = »

=X, Frob {by any of “y,” in d¢ Uf—"l <5 (n,1)
Ny

:'"(]_7:1 En % ’?dm?i)l’ﬁ(",i) 4)

Equation (4) arises naturally under the Poisson assumption of the firing
process. In a small time interval df the chance of destruction is proportional
to the attacking enemy’s (n-%3; r}dt) effective kill rate (z3,)”, and to the
current number of units (m) since and one of m units might be hit. Equation

(4) can be simplified further by substituting Equation (2).

J

4p7(m,1ydt=m3; %% 7} T yi(t)dt (5)
=1

Transposing and taking lim of both sides of Equation (3) after substitut-
dt+0

ing Equation (5),

1) The reason for this proportionality is intuitive and simple. Since Prob{destruction in dt} =Prob
{fire in dt} x Prob {hit}, when n=100, % =0. 5, r=60/min (say), and dt:*gm min (say),
firing occurs once in every 100 time intervals on the average, i.e., the probability that a firing
occurs in a specific time interval dt is only Too If n doubles (n=200), firing occurs once in
every 50 time intervals on the average and the probability that a firing occurs in a specific time
interval dt doubles(—Sb—), too. Furthermore, the size of the infinitesimal time interval dt is only

a conceptual one and its limit is 0.
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_gfﬁfOnJ)::{on+4)pf0n+4,0-—HWfO%f)}'

(%% 7 my®) 0=m=p(0)~1
=
= —mpi(m,t) Y. %%; 13 ﬂj’i)Tj(l); m=x;(0) (6)
=

But since
— xi(0y
xi(t)=73, m-p“(m,t)
m=0 t
. x,¢0) : d x
'-gt—xi(t) = mgom'—dTﬁi (m,t)
x;(0)y-1
= (=020, D+ 3 mL(nek D (nok 1, 1) = mp (m,2) )

Ncwy Ty oy —
ng/%i 7 ”j;']j(t)
= (=251, 4272, 1) =432, 1)+ ++++ [x:(0) — 1T (0) 42(x:(0), 1)
=5 (01 (xe(0), D) 293 7} w0

=0 "0 —_
=—{E mrenn] Ty 13 w3

=—% O E%% 7 73 50 ™)
b=
Similarly, the attrition of Y force is described by;
d — —_ o % ox X —
7)’;‘(’) =— )’j(t)ig/o iy xi(t) (8

These differential equation models of warfare are deterministic in a sense,
always yielding the same result for given initial conditions. However, such
attrition equations are derived via stochastic formulation to represent the mean

course of battle having an underlying probability distribution.
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Fortunately, there are many numerical techniques available to solve the

system of differential equations of this type. Some of the solution techniques
are preprogrammed as computer subroutines and readily available (e.g.,

subroutines “RKGS” and “HPCG” in FORTRAN).

Lack of Information on the Enemy Status and Equilibria

The first point we may observe about the system of Equations (7) and (8)
is that they define certain conditions of equilibrium or stalemate. That is to

say whenever
A zy=-"23,=0 for all i and j
dt ™' de 7’ '

We thus have M+ N equations between the M+ N variables x_i(t) andj;(t),

which determine certain values
x:(t)=c¢; and y;(t)=c¢; for all ¢ and j.
In general there may be a number of such possible equilibria.

The outcome of the battle (terminal state) depends on the specific initial
condition and weapon allocation strategy of the forces, However, it is entirely
possible that under certain weapon allocation strategies the initial condition
of the forces may correspond to an equilibrium state; or during the course
of the battle the number of survivors on two sides dwindle to an equilibrium
state resulting in a stalemate.

Physically, a stalemate can arise if each participating unit follows a
prescribed, non-adaptive attack pattern when each force does not have
spontaneous information on the current enemy status.

One way to avoid a stalemate is to make the weapon allocation strategy

adaptive to the enemy status. That is

%?j___%fj(yl(t)vyz(t); v ,.y”(t)7 t)
and

%]?’iz%ﬁf(xl(t)’ xz(t), veey x"(t), t)
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$tate Equations

The system of equations may be readily solved either with or without the
independent variable, #, eliminated from the equations. The solutions achieved
with ¢ first eliminated as a variable may be called the state equations,
wherein the state of either force at any given stage of the combat is simply
specified in terms of the other’s state.

For the brevity of notation, let ¢;=%7, rizy and ¢};= %7 rIz?%. From

Equations (7) and (8),

- x d — u x . -~

Elcij*‘zt— xi(t)=— gl JZ:IC” ¢k xi(2) 25 () 9)
N d _ N M . .

Zlcfiwyi (t):'“_zl Zlcjy.i S HOEAO) (10)
i= i=li=

The equality of the right hand sides of Equatinos (8) and (9) leads to
the following system of M x N equations:

S Ex(0)—x=5 % [2:(0)—7;] for all i and J. (1)
i=1 i1

The Equation (11) specifies the dynamic states in terms of the surviving
X-force (x;) corresponding to a specified terminal state of the Y-force (),

and vice versa.

Numerical Demonstration

Consider a battle between two forces with the characteristics described in

d x; (t) for brevity of notation. From Equations

dt
(7) and (8), the following systems of differential equations are obtained.

Table 1. Let )'ci denote

(1) X-strategy I (non-adaptive)
x1=—x1(.00155; + .001y,)
%= —2x2(.002p; + .002y,)
1= —y1(. 003x;)

Y= —)2 ( 004x2)
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Table 1. Weapon Characteristics and Strategies for the Numerical Examples

Weapon Characteristics Both Sides
Weapon Type 1 (heavy) 2 (light)
Firing Rate/min. .1 .2
Initial Size 50 100

Weapon Allocation

Single-shot X-strategy Y-strategy
Weapon Target Kill Probability
Type Type (both sides) I 11
1 1 .03 100% e 50%
yit+y2
2 .04 0% - 50%
yit+yz
2 1 .01 0% S - 50%
yit+y2
2 .02 100% 2 50%
vty

(2) X-strategy II (adaptive)
x1=—x(.0015y; + .001y,)

2= —x2(. 00291 + .002y)

S . 003y, .002y,
% " <y1+yz ot Ntz x2>

: . 004y, . 004y,
- — —_— X —_—X
J2 Y2 <]1+)’2 1 + e 2)

The systems of differential equations are solved by the commonly available

subroutine “RKGS” in FORTRAN and the results are displayed in Figure 1.

Connection with Lanchester’s Model

Probably one of Lanchester’s contributions to the study of combat is his
distinguishing between warfare that consists of a series of duels without
concentration of power (Linear Law), and warfare in which each side is
able to concentrate its entire force on the other (Square Law).

If both sides possess only one type of weapon, the model developed in

this paper indeed reduces to
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X=— (rr) xy

y=—(m) w1
which are commonly known as Lanchester’'s Linear Law. Differential
equations of this sort have been discussed to describe the struggle between
animal species [6]. Lanchester also noted these nonlinear equations, but he

did not develop the consequences of the theory behind them [37.
Conclusion

. The model provides a convenient analytical tool wherever questions
concerning the trade-offs between such parameters as weapon accuracy,
lethality, rates of fire, etc. are important. A second area of application is
in evaluating tactics and strategies. The model can answer the questions such
as: (1) Should a weapon system be exclusively assigned to attack a certain
enemy target or used as a general support? (2) Would a certain condition

lead to a stalemate?

1018196 1o Taquing paiadxg

Duration of Engagement (minutes)
Figure 1
Effect of Weapon Allocation Strategies
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ABSTRACT

The relative importance of single-shot kill probabilities, rates of fire,
weapon allocation strategies, and the size of initial force in warfare between
two forces with heterogeneous multiple weapon systems are considered by
examining their effect on a natural measure of effectiveness, the expected
number of survivors. Atfrition equations are derived via stochastic formulation to
represent the mean course of battle having an underlying probability distri-
bution.

It is assumed that each side uses indirect area fires. Level of intelli-
gence activities are reflected in the availability of spontaneous information
on the current enemy status. Depending on the availability of the information
on the current enemy status, each participatory unit may follow

1) a prescribed attack pattern (fraction of the available units assigned to

various enemy targets) or

2) an adaptive attack pattern depending on the enemy status at that time.

Conditions for possible stalemate are discussed,
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