Abstract
As a wet chemical drying process "hot petroleum drying method" was applied and developed for preparing uniformly fine oxide powder with high purity and sinterreactivity. Using this method solution of sulfates was dried in hot petroleum bath (~17$0^{\circ}C$) to sulfate powder from which corresponding mullite doped by Fe3+ ion was formed. Particle size, shape, decomposition by heat, and phase identification of sulfate andoxide powders determined by DTA, TGA, X-ray diffraction, analysis and electron microscopy: sulfate powder prepared by this drying method is an intimate mixture of the amorphous form of uniformly and finely distributed spherical particles (0.05-0.1$\mu$). Mullitization with the sulfate powder occurs at 110$0^{\circ}C$ in air. The morphology of mullite particle made by firing the sulfate powder at 135$0^{\circ}C$ in oxygen atmosphere is granular of 0.1-0.3$\mu$ in size. This drying process proved to be a very effective method for preparing fine, homogeneous, and highly sinterreactive multicomponent oxide powder without conventional ceramic process of mixing, milling, and granulating. This process can be also applied for preparing electronic ceramic materials which are requisite for high purity and homogeneity.mogeneity.