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Finite Element Method in Structural Analysis of Ships

by

Yoshiyuki Yamamoto*

Introduction

The finite element method has been developed since
late 1950’°s, and it has been applied to various fields
of structural analysis. As for ships, it was first appl-
ied to structural analysis by Det norske Veritas”, who
developed a computer program system SESAM 69 later
for this purpose.

The finite element method is an approximation me-
thod which can be easily understood by biginners. It
is based on the well-established variational principle
of elasticity; therefore, any boundary condition can be

approximated from the view-point of energy principles,

and bounds of errors can be estimated with the aid

of functional analysis.

Computer programs for the finite element method
can easily be developed: A biginer can write a prog-
ram for analysis of a simple two-dimensional problem,
and its scheme is the same as that of the main part
of a large-scaled general-purpose program.

The finite element method started with linear elastic
stress analysis. With the progress of computers, the
range of its application has been expanded to elasto-
plastic stress analysis, buckling and geometrically
non-linear problems, dynamic behaviors of structures,
interaction problems of structures with their environ-
ments, simulation of a structure under varying con-
ditions, and design optimization of structures. Recently
it has been applied to problems other than structural
analysis on the basis of an appropriate variational or

some other principle.

Finite Element Method -3

In the case of linear elasticity, there are many va-

riational principles, and from each of them, the res-
pective finite element formulation can be established.
In the following, the stiffness method, the formulat-
ion based on the principle of minimum potential ene-
rgy, will be mainly discussed.

The procedure of the stiffness method applied to
linear clasticity consists of the following six steps;
1. decompose a structure under consideration into sm-

all elements with simple typical shapes, and define

the nodal displacements;

o

introduce shape functions for each element so that

they may be compatible along the inter-element bo-

undarics, and define coordinate functions correspon-
ding to nodal displacements;

3. derive the element stiffness matrices & correspond-
ing to nodal displacements, and obtain the load
vectors f;

4. assemble elements stiffness matrices and load vec-

tors to obtain the global stiffness matrix K and

the global load vector F, which give the equilib-
rium equation;

solve the equilibrium equation given as a set of

(2]

linear algebraic equations; and
6. calculate the stress distributions in each element.

This procedure can be understood by Fig.1. In the
case of nonlinear problems, step 3 is modified at each
loading step, and the rest of procedure is repeatedly
applied according to the loading history. For elasto-
plastic analysis, elastic modulus tensors are modified
by taking into consideration of occurrence of plastic
loading and unloading processes. In the case of dyn-
amic problems, a mass matrix should be introduced.
For numerical simulations, it is convenient that the
structure is decomposed in conformity to the process
of simulation.

With the aid of functional analysis, it can be pro-
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caused in this process are called rounding or round-off
errors, and in general, they increase with the number
of nodal displacements.

Moreover, it should be noticed that the economical
viewpoint is an important feature of the finite clement
method, because it computaions may be very expens-

ive.

Program Devclopment for Ship Structure
Analysis?

Many computer programs for structural analysis
have been developed, and large-scaled programs are
categorized into two; gemeral purpose pregram and
special purpose program. A general purpose program
is capable to analyze many kinds of problems, but its
application to smaller problems may be ineconomical
in general. ASKA, NASTRAN and SESAM 67 are the
most famous ones of this kind.*:%® A program consists
of four parts:

1. Input.
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2. Element Library.
3. Solution.
4. Output.

The number of unknowns treated by a large-scaled
program may be hundreds of thousands, and therefore,
solution should be carefully designed. For this purpose,
the multi-layered substructure method is effective. A
huge number of input and output data are handled
for this kind of programs, and it is really laborious
work. Special purpose programs arc designed to save
labor for preparing input data and visualizing output
data by storing appropriate subprograms called input
and output generators in conformity to the problems
of a special kind. PASSAGE is designed as a special
and bulk

carriers.® A general purpose program can be regarded

purpose program for tankers, ore carriers,
as a special purpose program if appropriate input and
output generators are attached. Input and output
generators for NASTRAN were developed by Lloyd
Register of Shipping. A special purpose program is

convenient to analyze problems of special kind; their
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input and output generators are, however, extremely
specialized and cannot be applied to structures of
other classes.

There are so many programs of moderate or small
size. STRUDL and SAP programs are general purpose
programs of moderate size, and can be conveniently
applied to local strength analysis of ships.® A special
purpose program named BCSTAP was developed by
the present author for transverse strength analysis of
bulk carriers;!® it is designed for dailyworks at Nip-
pon Kaiji Kyokai, and its general feature can be seen
in Fig. 2. Input data for BCSTAP can be prepared
in a half day by one man. For local strength analysis,
small-scaled programs for plane stress problems can
be conveniently applied.

Transverse strength of a ship can be analyzed by
the frame analysis method, which can be considered
as a kind of the finite element method, and it is very
effective and economical for special types of ships
like tankers. As an important feature, sectional forces

and moments are calculated directly by this analysis

Sub.1

P
Substruciure
technique

Fig. 3.
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together with stress values, and they are most familiar
quantities for designers. It should be noticed that
there is a limitation for the range of application by
this method; it is inadequate for double bottom ana-

lysis.

Stress Concentrations and Stress Intensity

Factors

Stress distributions in ships can be roughly estim-
ated by the conventional beam theory or the three-
dimensional finite element method. Detailed stress
distributions around a rounded part can be calculated
by the finite element method by finely subdividing
the structural part under consideration. For this pur-
pose, the substructure technique and the zooming te-
chnique can effectively applied; the latter is a special
instance of the former, and is much more convenient
for practical applications. In the case of the zooming
technique, finite clement solutions with fine mesh

subdivision are obtained only for a restricted domain

zo0ming

Zooming  technique

Substructure technique and zooming technique
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Fig. 4. Method based on superposition
(Fig. 3) which covers the part under consideration, o7+ 0°=0 (2)

and are in equilibrium on the boundary of this dom-
ain with the siresses obtained by the preliminary ca-
lculations. It should be noticed that precision of solu-
tions obtained depends largely upon the size of the
domain for zooming analysis; the size should be large
in comparison to that of the rounded part.

The author proposed a special technique for analy-
zing stress concentrations on the basis of the concept
of superposition of analytical and finite-element solut-
ions.!? In most cases, the stress distribution ¢ around
a cutout can be estimated with an analytical solution
o7 within an unknown parameter ¢; the residual part
of solution can be determined without using fine mesh
subdivision. The solution ¢ is given in the form

oc=c(o*+a7)}ta° ¢))
where g7 and ¢° are the residual solutions obtained
by the finite element method (Fig. 4). The unknown
parameter ¢ can be determined by introducing the
above expression into the principle of minimum poten-
tial energy. The parameter ¢ can also be determined

accurately by the following simple condition:

where the stresses are evaluated for the maximum
stress component at the point of stress concentration.
This condition can be derived from the principle of
minimum potential energy by omitting small quanti-
ties. This idea can be applied widely to various prob-
lems.

Stress distributions around a crack front are chara-
cterized by the stress intensity factor, which is closely
related to fatigue and brittle fracture and plays a
central role in linear fracture mechanics. Consider a
cracked plate stressed symmetrically with respect to
the crack plane (cf. Fig. 5). The stress near the cr-
ack front is given by

Ox K [cos (8/2)[1—sin(8/2)sin(36/2)]
oyt = «/ZT cos(8/2) [1+sin(8/2)sin(36/2)]
T {sin(8/2)cos(0/2)cos(36/2)
+0() &)

where K is the stress intensity factor. A large nu-
mber of methods for determining it by using the finite
element method have been proposed, and the simplest

method is the use of crack opening displacement near
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Fig. 5.
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Fig. 6. Stress intensity factor

the crack front. The difference of displacements of a
pair of peints(r, *x) on the crack plane near the

crack front is given in the form

— 8 vz
—m=2 (L) &+ W

where E is Young’s modulus. Plotting numerical

v(r, +n)—v(r,

results for the right hand side of Eq. (4) versus r
gives the stress intensity factor K(cf. Fig. 6).

The stress intensity factor has a similar property

Journal of SNAK

to the stress concentration factor, and therefore, the
method based on the concept of superposition of an-
alytical and finitc-element solutions can be applied
effectively.’? The first term on the right hand side of
Eq. (8) can be regarded as the analytical stress distr-
ibution, if K is considered as an unknown parameter.
The condition given by Eq. (2) takes the following
form:
K 6i+05=0 @2
where the left hand side is evaluated at the crack
front, and ¢} and ¢} are the y-components of &7
and ¢° which can be determined as hefore. The
parameter K determined by this condition is the stress
intensity factor. The present method can be applied

to complicated problems including three-dimensional

oles.

Numerical Simulation

The finite clement method can be applied net only
to structural analysis but also to simulation of proce-
sses, such as cutting and welding of plates and load-
ing and unloading of cargoes on board. Here behaviors
of ores in an ore carrier will be dealt with, and is
regarded as an interaction problem of a ship-cargo
system.'® The ore cargo behaves as a structural element
in an ore carrier, and shows nonlinear elasticity and
yielding as a continuum. The elasticity is governed
by the following complimentary energy per unit
volume:

Ue=CilJ?+ Cody+ Co(J2/ )7 (1<<0) &)
where Ji and J, are the first and second stress in-
variants, and Cj, C; and Cj are the positive numerical
constants corresponding to elastic coefficients. The
third term in the expression for U. governs the phe-
nomenon called dilatancy. As for yielding, ores follow
the Drucker and Prager criterion given by
f=al1+ 2 —k=0 )
where @ and % are constants. For Kaiser ore pellets,
it can be assumed on the basis of experiments that

Ci==0.03, C;=0.25, C;=1.5(mm?%kg), a=0.27,

k=0

As can easily be seen, the mechanical property of
ores depends upon the instantaneous stress which is

closely related to loading pathes of ores.
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The ore stress distribution just after loading has been
estimated by the Coulomb theory which can be rega-
rded as a rigid-plastic analysis method. Here it will be
done by the finite element method according the nu-
merical simulation procedure which has been employed
for excavations and embankments in soil and rock
mechanics.? The hull structure and the ore field are
subdivided into finite clements in conformity with the
sequence of ore loading. Consider the loading stages
i and {+1 shown in Fig. 7. The change of the load-

ing stage from 7 to i-+1 is realized by adding a laycr
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of ore and by changing the water line from A to B.
Let g; and 6:,1 be the stresses at these two stages.
Then the increment
do=0i1—0; ()]
can be obtained with the aid of the finite element
analysis by considering the ore field and the hull as
one structural system and the stress g;.1 thus determ-
ined will be used for the analysis at the next stage.
Fig. 8 shows the Fushu-maru on which Hagiwara and
Tani measured ore pressure on longitudinal bulkheads;

the orc field is idealized by triangular elements, and
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Fig. 8. Ore pressure distributions on longitudinal
bulkhead

the hull by bcam elements. The ore treated here is
iron ore fines of specific weight 2.6x107% kg/cm® The
ore pressure distribution just after loading can be cal
culated by the present procedure, and the results are
shown in Fig. 9 together with Hagiwara’s experiments,

which shows fairly good agreements.

Buckling and Postbuckling

Buckling of a plate shown in Fig. 10 can be analy-
zed by introducing the so-called geometrical stiffness

matrices, which corresponds to the terms including
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Fig. 10. Rectangular plate

instantaneous stresses in the linearized equation of

equilibrium given by

0% Fw %w
4 ={ x—o—zgvﬁ" —— ——
Dddw (a R R ) ®)

where w is the displacement in the z-direction, and
t and D are the thickness and the flexural rigidity
of the plate. In most cases, ships’ structural elements
in compression have a rectangular form, and the de-
flection w can be expressed in a Fourier series; if the
plate is simply supported at the transverse edges, the

deflection is given exactly in the form

wiz, =5 Waly) sin 7% ©
where a is the length of the plate in the direction
of compression, and W,’s are functions of y alone.
The coefficient W, can be discretized in the y-direc-
tion by the same way as the conventional one-dimen-
sional finite element method, and is expressed in terms
of the values at nodes or nodal lines. Moreover, the
expression given by Eq. (9) is approximated by a

finite Fourier series as

w(z, y):év Wa(y) sin *”Zx" (9"

n=1
The finite element formulation is easily be derived
by the Galerkin method; multiplying both sides of
Eq. (8) by
sw(z, =2 bwaly) sin "ot 10
and integrating the resulting relation throughout the
mid-plane of the plate lead to the final equation. The
finite element method of this type is often called the

finite strip method.

Journal of SNAK

By this procedure, a two-dimensional problem can
be converted into a set of one-dimensional problems.
The finite strip method can be applied not only to bu-
ckling analysis but also to postbuckling problems. In
the case of elasto-plastic deformations, this technique
has a tendency to loose accuracy from the theoretical
point of view. Fig. 11 shows a complicated plate
structure in compression, which can be analyzed by
the use of strip elements and conventional beam
elements, The results are shown in Fig. 12 together

with experimental results, which shows fairly good

agreements.
Qzurm Fan 4
o e e e o s e e ] A
2 4
A PR n23 e i .
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Fig. 11. Bottom transverse

For determining buckling loads, an eigenvalue pro-
blem should be solved, and it is, in general, given as
a large-scaled problem, although only the lowest eig-
envalue is to be obtained. For this kind of problems,
the Rayleigh-Ritz method has been commonly used.
An extension of this method, called the simultaneous
iteration method or the subspace method, can be effi-
ciently used for this problem. Assume the eigenvalue
problem is given in the form

Axz=¢Bzx (11)
where A and B arc positive-definite symmetric ma-
trices, and & is eigenvalue.’*:'® Both of A and B are
not necessarily positive-definite in practical problems,
but they can be rewritten in the above form by an
appropriate transformation.

The present method starts with chosing a sct of

starting iteration vectors 0 (i=1,-++ ,p). Algorithm

of this method is as follows;

1. Xg=[la}, 5]
Ziw=A X
2. go to 4;
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3. solve AX(M:ZU”
4. Uwpy=BXw
5. the Cholesky factorization

Xw'Zwm=Rw'Run
where R is an upper triangular matrix, and ¢
indicates the transpose of an appropriate quan-
tity;
inversion Ruw=R1w
Buw=XwmRw)'UnRu
8. solve the eigenvalue problem
Bu Qm=Quw Aw
where Qu!Quw=I=unit matrix, and Ay =diag
(k@ 1/xuw )
convergence test;
10. if solutions are convergent, put
Zaiy=UnQum
11. return to 3.

In engineering problems, 4 and B are given as
band matrices, and this algorithm takes advantage of
this property, and can be applied efficiently on virtual-
memory computers.

Elimination of unwanted variables is often used for
the same purpose.'® It can be regarded as an special
instance of the Rayleigh-Ritz procedure, and may give

significant errors if variables to be eliminated are

chosen improperly.
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If once the cigenfunctions or the buckling modes
are determined, postbuckling behaviors can be analy-
zed by the Ritz procedure by using the buckling mo-
des as the coordinate functions. The finite element
equations can be solved directly, but it is generally
inefficient for practical purpose. It should be noticed
that finite elements other than the socalled conforming
clements may give significant errors in buckling and
post buckling problems.

Moreover, a free vibration problem is given as an
cigenvalue problem, and the above methods for eige-

nvalue problems can be applied to it.
Conclusions

The present paper deals with basic applications of
the finite element method to structural problems; the
fundamental theories for them are almost established.
Structural optimization and dynamic problems are not
treated herein, though they are getting more import-
ant. For these problems, efficient optimization techn-
iques or time integration schemes play important rol-
CS.17)
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