2

179

3T 77-14-6-2

Microprogram Organization for the Execution

of A General Purpose Language

Feay i 7&%*
(Cho, Jung Wan)
2 of
W90 AFelolo] B At o] ol 3o gl 7 3-¥] architecture & A} A}gkgd v}, o] arch-

itecture & whel 22z 27| Y-E o[&ebd o8 [AL wlo]la 2R F swapping 9] Le4dE Folm
24 old &85 ANE WG F dE A3, YFe shlaBEEC] Aol oAl Ha Al
f“-ﬁ“—-lfﬂ 3ol J5E Aol

Abstract

A general purpose language is defined and a computer architecture suitable for this language is

proposed. The proposed architecture utilizes the microprogramming technique.

The significant

features of the proposed architecture are the reduction of the overhead in micro-module swapping

and graceful degradation of the execution upon detection of the micro-module fault in the time-

sharing environment,

1. Intreduction

One may observe in the recent language develo-
pment such as PL/1 a trend toward commonality,
This commonality refers to the availability of large
numbers of features within one language sufficiently
broad to cover the demands of scientific, commercial
and perhaps even systems applications. Many
techniques have been developed to efficiently deal
relies upon

with these features. However each

special mechanisms such as stacks, data formats,
array addressing and control, segment protection,

etc, The cost of providing all these mechanisms in
* RS H, EEREEL A stelod =

[
€ AdFE —"r%*?*o" @Foea AT
A elg gk

=
(Korea Advanced Institute of Science, Computer
Science Department, This research was suppo-
rted in part by the KAIS-IRF 0403-4214.)

WE S 19774 118 140

their
We may conclude,

hardware has seemed too high to warrent

inclusion in any one machine.
that together the {features

therefore, bringing

required by all of the scientific, commercial and
systems applications cannot succed in an efficient
manner and consequently we should produce speci-
We

in fact, this is not the case when

alized languages and specialized machines.
believe, however,
we consider the user-microprogrammable computers,
where complete environment is not fixed into the
machine. Then, however, the problem is to conserve
the amount of control storage needed to implement
these language features, since the cost of control
the entire

storage is a substantial fraction of

processor cost. We will therefore assume that
micoprogram storage sufficient to implement all these

features is not available in the following section.

2. General Purpose Language

In this section we give a descriprion of the

180 19785 1 4 EFTREE F14E 65

general purpose language. The description that will
be given here is conceptual rather than formal
grammar such that it provides the environments
that the general purpose language supports. We
observed the classes of applications at the language
level in the previous section.

In programming practice there are still highly
correlated uses or clusters of certain features which
are related to the specific application. That is, most
programs will emphasize one particular feature of
the wide spectrum of features supported by the
language. For instance, some

general purpose

program will emphasize scientific calculations and
only infrequently use the certain features present
for systems or commercial applications. Furtherm-
ore, there exist certain common nucleus of features
procedure entry and exit,

such as expression

evaluation, data type and structure, etc. From
these phenomena, we may conclude that the language
specification and translation process are uniform
and independent of the usage, however, the running
environments will emphasize certain characteristics
of typical use or might be specialized for custom
applications.

Based on the developments in the above phrase,
we can derive a description of the general purpose
language L in terms of the environment, E, that L

supports.
E=N+ ﬁpj 1)
J=i

In(1), N is the common nucleus, F; is one of the
n dominant feature grouns that L supporis.

For (1), it may be difficult to develop an algorithm
for partitioning the features into dominant feature
groups. However it is not too difficult to list some
of the inherent particns. Hardware/firmware impl-
instructions divide and

emented for multiply,

evaluation of the mathematical {unctions may
belong to one group which is dominantly used by
Hard-

ware/firmware implemented instructions for decimal

the programs for the scientific applications.

computations, file handling, and high performance
input/output may belong to the other group which is
dominantly used by the programs for the business
applications. On the other hand, hardware/firmware

implemented instructions for interrupt handling and

privileged instructions for task managements may
belong to still other group which is dominantly

used by the programs for the systems applications.

3. Machine Architecture

It is obvious that the construction of the machine

architecture for general purpose language is
straight forward when the censtruction cost is not
one of the major design criteria. In this case one
may implement the common nucleus and all of the
dominant feature groups, ie. F;’s in(l) in the
host machine with the combination of hardware
unrealistic as

and firmware. However this is

described in the introduction. What we must
consider is the cost and performance tradeoffs.

When one wants to simplify the construction of
the machine architecture, a specific user's environ-
ment, E; of the user U; can be described as shown
in(2).

E NG By oo (2
Although the interpretation of (2) for N and I is
somewhat different from what we proposed in(1),
Wilkes?1], and Cho and Wool3, 4]
proposed user-microprogrammable archiieciures

based on(2). In

Thomas{27,
their approaches N and I} are
considered as the micro-modules for the base
machine instruction set and for the user-defined
special instructicn set, which 1s microprogrammed
In these architectures

by user U;, respeciively.

N is stored permanently in ROM. The differences
between these architectures are the storage mediums
for the micro-codes for F; and the mechanisms for
execution of F;. These architectures are suitable
when one process remains in the execution state

until it finishes. However this is not likely to
happen in the multiprogramming environments. In
this case, wienever the process switches, loading
and storage allocation for the new micro-codes pose
as overhead. Furthermore, since each user may
have a different micro-module and, for i , F; and
F; may contain some identical micro-codes, micro-
programming efforts may be wasted by the redun-
dant micro-codes among users.

This paper inspects the

user’'s environment

Microprogram Organization for the Execution 181

somewhat differently. When we inspect the user
profile, a specific user’s environment E;, for the
user U; in terms of the features required by Uj,

may be expressed as shown in(3). In (3) ¢'s are

E;=N+F;+ f;'e,-F; (3)

i=1 i

small numbers. From (3) we may conclude that,
for Uj;, there must be sufficient resources to carry
out the activities of the programs of U;. This
implies that the machine architecture may provide
sufficient resources for E; but not the totality of
U;i's
program, we assume that the language processor

E. In order to perform the activities of the

should produce codes for the hypothetical machine
L. This is actually restructuring of the higher level
language into a very broad class of machine
primitives that the architecture can accomplish.

In(3), if F; is in fact a predominantly used

feature group, then the ratio of :‘:’ F; and N+ F;

i=1,i%j

will be significantly smaller than 1. There are

several ways of computing this ratio. One way is
to compare the frequeucies of usages of each feature
group. At any rate, since this ratio is significantly
smaller than 1, loading of micro-codes for F's,
where i#j, for user U; is not economically justi-
fiable. Therefore, a cost effective general purpose
anguage architecture can be constructed from (3)
ch that taz common nucleus N is implemented
by hardware or microprogram permanently stored in
ROM, the dominant feature group F; for user U; is
mplemented by microprogram loaded in the writable

control storage, and the rest of {feature groups,
F;’s, where ij, are implemented by using either
N or Fj, or both. This implies that F’s must be
implemented via software routines that utilize the
features N and F;. Furthermore all the routines
for Fi’s must be main memory resident in order to
maintain reasonable execution speed.

From the development in the previous paragraph,

we can now rewrite (3) as shown in (4)
E;=N+F;+ 3eR:(N,})
i=1,i%]

where R;(N,j) represents a set of software imple-
mented macro-routines that behaves as the feature
group F; using N and F,. In order to construct a
general purpose language architecture for (4),
it requires to comnstruct 1+ micro-modules for N
and Fj’s, and n2—n macro-modules for R;(N, j)’s.
However, in (4),
Ri (N)
comnstruct 1-+z micro-modules for N and F;'s and
n macro-modules for R;’s.

if we transform R;(N,j) into

or simply R;, then it only requires to
Such a transformation
requires that the macro-modules R;’s must be
constructed by using the common nucleus N only.
The reduction of the number of macro-modules to
be constructed has advantages; first, savings in the
macro-module development efforts, second, savings
and third,

swapping time

in the macro-module storage space,

reduction of the macro-module

overhead. By doing this, (4) can be rewritten as (5).

Ej= N+ Fj+ 37€iR; croeerenoeevennemrereanenens 5)

i1, i%j

MICRO-MACHINE

Fig. 1.

micro- Cade
mcro-code

USER PROGRAM

General purpose language architecture.

182 197841 1 1] W Pk W14 E 65

From (5), we propose a machine architecture, that
supports the general purpose language, as shown in
Fig. 1.

In Fig.l, the series of routine R,, R,---, R, are
resident in the main memory and all of which are
supported by the nucleus, which is always present
in the microprogram memory. The only swapping is
of micro-modules F;. If a feature not supported by
F; is used, say F;, the system uses one of the
back up routines R; which share a common interface
with nucleus. Interestingly, should a system decides
not to swap F;, particularly in the time-sharing
environment, the next user may have a micropro-
gram fault, i.e. user U, expects to have Fy#F; in
the writable control store, but U,'s program will

still execute correctly but more slowly using R,

4. Conclusion

may go to either
to be

In actual implementation we
.extreme in the number of environments
provided. We may, due to lack of time and effort,
simply provide one environment. This approach is
-equivalent to the present choice of buying a machine
with a fixed instruction set. At the other end of

the spectrum we can provide specialized environ-

ments, either by writing them as they appear
necessary to optimize a certain task, or probably
we can produce such environments in some autom-
atic fashion. For example loading a library of
subroutines as now they are done from a subroutine

library.

References

{17 M.V. Wilkes, “The Use of A Writable
Control Memory In a Multiprogramming Envir-
onment,” Preprints of the 5th Annual Workshop
on Microprogramming, Sept. 1972, pp.62~65.

{21 R.T. Thomas,
Allowing Dynamic User Microprogramming”,
SIGMICRO Newsletter, Vol. 4, July 1973, pp.
28~39.

731 J.LW. Cho and N.S. Woo, “Design of A User

Microprogrammable Computer, “Journal of Ko-

“Computer Organization for

rean Institute of Electrical Engineers, Vol. 26,
Jan. 1977, pp.71~76.

4] J.W. Cho and N.S. Woo, “A Fourth Generation
Microprocessor Architecture: User Microprogr-
amming with Low Cost,” Digest of Papers in

15th IEEE Computer Society International Con-

ference, Sept. 1977, pp.451~453.

