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Optimal Control of Electrohydraulic
Actuator System
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1. INTRODUCTION

Electrohydraulic servomechanisms are
commonly used where the requirements
exist for a sufficient accuracy and quick
response with high power. Several appro-
aches have been conducted in this area to
improve the performances of the servome-
chanisms such as the acceleration switching
servomechanisms and the pulse width mo-
dulated servomechanisms® ?.

These servos employ essentially the me-
thod that appropriately modulates the error
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signal and transfer in the form of electrical
input (voltage, current) to the valve.

In conventional electrohydraulic servo-
mechanisms, the outputs are fed back by
potentiometer with an appropriate feedback
gain. These are compared with the input
values of the overall closed-loop system
and the error signals are, after amplifica-
tion, sent to the plant again®.

Then there arises the question that what
values of the feedback gain should be used
to get the best overall system response.
There is no simple rule to aid the designer
to find the feedback gain. The final choice
usually results in a compromise of the
desirability of rapid responses and the de-
sire to reduce excessive overshoot that ga-
rantees, though not directly, the stability
of the system. Usually the root-locus te-
chnique was used to determine the best
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feedback gains by trial and error. But the
technique gives us no information about
the optimality. When the system is desired
to be controlled with a certain performance
index or has more than two inputs, the
technique is not applicable. In the above
the so-called A.S.
servo and P. W.M. servo, the main inte-
rest lies in the performance in the frequency

two servo systems,

domain. For linear systems, it can be
shown that frequency response characteri-
stics well agree with transient responses
and it is also very important to know the
transient responses and to improve them®.

In this paper, the responses in the time
domain are considered and with the optimal
control theory performance improvements
of the system is investigated. The perfor-
mance measure such as rapid responses,
accuracy and stability are described in the
form of quadratic performance index.

To obtain the optimal control policy,
Riccati equation is solved and the steady
state feedback gains and input gain are
computed with this solution. The restilting
system responses and performance index
curves are computed and compared with
those of P. W.M. system with analog com-
puter. In order to obtain numerical values
of the system, the characteristics of Moog
valve are used.

2. THEORETICAL BACKGROUND

2-1. Optimal control theory

This is the brief of the well known linear
tracking problem. The linear plant to be
controlled can be described in general as
the following vector matrix differential
equation;

X(t)=AX(t)+BU() (1)
where A is nX#n square matrix, B is nXm
matrix, X(¢) is n-dimensional state vector
and U(¢) is m-dimensional control vector.

In the linear tracking problem, the per-
formance index to be minimized can be
selected quadratic form as

J=0X () =7 () - H@®) -[X () =7 (1))
+"iexw —r @@ X0 —r®)3
+UT(@)-R@®)-U®)}dt @

where ¢, is initial time an:i t, is terminal
time and 7(¢) is the desired value or refe-
rence state vector that is not the origin 0.
H and Q are real symmetric positive semi-
definite matrices, and R is a real symme-
tric positive definite matrix. The physical
interpretation of this index is that it is
desired to minimize the deviation of each
state from reference state in the time in-
terval [(f, t;] and also the deviation of
final states without excessive expenditure
of control effort.

states and

Assuming that admissible

control are not bounded, and applying
variational method, the optimal law is

given as the following:'V.

U*(@)=—R-'(t) B" (1) K(6) X(?)

—R ()BT @#)S(0) (3)
where U*(¢) is optimal control input and
K(@) and S(t) are the solutions of the fol-
lowing vector matrix differential equations;

Kt)=—K® AW —AT() K@) —Q®)

+K@B@OR' )BT (KW 4)

and
S@)=—[A"(?)
—K@)B@)R()B(#)1S®)
+Q)r (), (5)
with boundary condltions
K(t,)=H (6)
S(¢,)=—Hr(,) (7
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Here equation (4) is called the Riccati
equation and these equations can be integ-
rated numerically from ¢, to .

By storing K(¢) and S(¢) in a computer,
the optimal input U*(¢) can be determined
and the plant is optimally controlled.

2-2. Steady state solution

Kalman has shown if®

(a) the plant is completely controllable,

(b)y H=0

(c) A,B,R and @ are constant matrices,
then K(#)—»K (a constant matrix) as ?,—oo.

From practical viewpoint, it may be fea-
sible to use the fixed control law even for
the process of finite time interval. If ter-
minal time #, is exceedingly large but finite
and ¢, and ¢, are also very large such that
0L <t, &t ,<loo, then the matrix K(f) may
be approximated by constan matrix K for
all te (¢, ¢:). In other words

K@) =K for te [t, 2. (8)

Using this approximation, the equation (5)
will be

S =—(AT—KBR'B")S(2)

+Qr () 9
If we set
G=A—BR'B7K and,
r(t) =r, (10)
then equation (8) becomes
St)=—G"S@)+Qr. (11)

For approximate system in equation (11),
with respect to ¢;, the solution will be

S () = (GT)"'Qr+e5 [ (GT) e "' Qr

+e767S(¢;) ]
for all te [y, 12] (12)
On the above conditions, all the eigen-

values of the matrix G have negative real
part. Thus

e°T- 2=

By approximation, constant matrix for

S(¢) is given as
S=(G").Qr 13)
By equation (8) and (13), fixed law of
optimal control is given as the following.
U*=—R'BTK-X(t)—R"'B"S

=F-X()+V, (14)
where
F=—R-'BTK and (15)
V=—R"'BTS

=—R-IBT(GT)"\-Qr
=—R-'BT(AT—KBR'BT)"'Qr (16)

2-3. Stability of the optimal system

It is shown that if the linear time inva-
riant system expressed in Eq. (1)
with performance index

17
J={"txrwexw)
+UT(6) R-'U(¢t) Jdt W)

(a) is controllable and

(b) U is not constrained,
then the matrix G have negative real part
eigenvalues'?. Thus the system varia-
bles will» have fixed values as the time
increases and by the definition of stability,
the optimal control system described by
equation (1) is stable.

In tracking problem in this paper, as
the matrix G is the same in both cases and
the stability of linear system is indepen-
dent of input signal, it can be said that

the optimal control system in this case is
stable.

3. APPLICATION OF THE THEORY

In order to apply the optimal control law
in equation (14), the servovalve and the
actuator must be expressed in the form of
state equation. This can be done by anal-
ysis of the servovalve and the actuator
respectively, and state space representation

——
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Fig. 1. Schematic diagram of electrohydraulic
servo

s made to assume the optimal control
»olicy.

3-1. Analysis of the system

Fig.1 shows a schematic diagram of
ypical electrohydraulic servomechanism
which is considered in this paper. The
transfer valve is a conventional 2-stage
1—wa§r electrohydraulic flow control valve
1s shown in Fig. 2. The transfer valve
smploys a hydraulic preamplifier of the
flapper type. As can be seen the flapper
valve is torque motor actuated and controls

two opposed resistances. The load is com-
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prised of mass and viscous friction.

With most of parasitic nonlinearities
(such as hysteresis, deadzone, stiction etc.)
materially reduced, the dynamic characte-
ristics of a 2-stage electrohydraulic servo-
valve can be represented by a second order
transfer function of the form:; 6)

_ Q.0
G.(s)= Vi(s)
PN K’I. W’lllz
=SoE Waestwr 18

where g, the valve flow, V7 valve input

voltage, &,, valve damping ratio and W,,
valve natural frequency and valve flow
gain K,(q,/V7) can be determined from the
valve pressure-flow characteristics. Fig. 3
shows a typical set of pressure-flow curves.
It can be seen from these curves that if
the operation of the valve is not large
from the origin, the flow gain is almost
independent of a control signal and the
above linearity is ensured.

As to the actuator, it may be analysed
as the following. The load elements of a
typical hydraulic actuator consist of iner-
tia, effects of oil compressibility, com-
pliance of fluid lines and load cylinder vi-

scous damping, stiction and coulomb fric-
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tion. The behavior of some of these load
elements, e.g, stiction and Coulomb fric-
tion is quite nonlinear. However stiction
occurs only when the load starts to move
and can be eliminated by applying a suita-
ble dither, while Coulomb friction may be
replaced, with reasonable accuracy by an
equivalent viscous damping, linear analysis
of the load is thus possible. For an inertia
and viscous damping load, the equation of
motion is given by

a
Py Ay=m- P f 0 (19)

where P is load pressure, A, the piston
area, x, the load position, m the mass of
the load and f, the friction coefficient.

From the law of conservation of fluid
flow, the total valve flow ¢, is equal to
the sum of fluid flow due to the motion of
the piston in the load cylinder q,, an equi-

valent flow of compressed flow ¢, and

leakage flow ¢,- Hence,

¢.=¢.+q.+q (20)
where

d
9. =4, 7 (21)
V. . dP,
9="35" gt (22)
=K. P, (23)

Here V is one half of total volume conta-
ined by actuator and lines between actua-
tor and valve, g oil bulk modulus, and K,
the leakage coefficient.

From equation (19)~(23), g, becomes
\%
A JCQ']L 25{ x0+ f‘XO:l
m .
TR d g )
=i A+ K,

»
i—x(fl ";,—T;— + f‘}qf”_)

L A’”‘;ﬁ (24)
If we set
A=A,+(f-Ki/A,)
A= (f,/A,)- (V/28)+ (K;»m/A,) (25)
A= (1/4,) (mV/28),

then equation (24) becomes

0, = A Ak Ay (26)
From the above transfer function and the
equation of motion, state variables and
input variables are chosen as x,=xo, %2= %, ’
x,=%,, x4=q,, %;=4,and U=Vi. By rearran-
ging equation (26), the state variables are
represented as;
921:‘.762
X2 = X3
3= x4/ Ay— (As/ As) %3~ (A1 As) %2 @27
X=X
2= Vis K,» W, 2~ W0 24—28,,» W x5
Thus the state equation of this system is
X=AX+BU,
where
XT= (%, X, X3 %4 X5)
B'=(0 000 K,» W.."), and
0 1 0 0 0
0 0 1 0 0

A=|0 —A/A; —A,/]A; 1/A; 0| (28)
0 0 0 0 1
000 —WwW,2 =26, W,
with initial condition
XT()=00000). (29)

Numerical values of system parameters of
conventional 2-stage, 4-way servovalve
and actuator in this paper are given in

Table 1. By substituting these parameters

Table 1. System parameters
Ap=0.623 in? m==0. 157 lb-sec?/in
B=2.0x10° psi V=2.575in?
f,=19. 86 Ib-sec/in ¢,,=1.05

k=1.38x101in%/1b W,,=214 rad/sec
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Table 2. Dynamic constants for the system

0 1 0 0 0
0 0 1 0 0
A=0 —65.5194 —22.5108 61.64 0
0 0 0 0 1
0 0 0 —4.580 —4.494

B=@ 0 0 0 13.9678).

into equations (25)~(27) and time scaling
of system equations in the unit of 1/100 sec,
the matrix A and vector B of equation (1)
become as the following. (Table 2)

3-2. Application

As controllability is the necessary condi-
tion for optimal control in this paper, itis
needed first to determine if the system is
controllable or not. A linear system is
completely controllable if and only if the
matrix P where

P=[B: AB: A*B: A*B: A'B]

is of rank #”. The P matrix in this case
is calculated to be

( 0 0 0 0 861.54

0 0 0 861.54 —5644.81

P=| 0 0 861.54 —18533 417155.3
0 13.97 13.97 218.1 374151.2

13.98 —62.8 218.1 —1044.12 —5667.2

and the column vectors of P are linearly
independent. Thus it is of rank 5, and the
system is completely controllable.

In hydraulic servo system, it is conside-
red to be most important to maintain the
velocity and the position of the load as
close as possible to the desired state in the
time interval [4, Z,). Hence the performa-
nce may be expressed as the following.

]:5::&111' (01— 7:) a2 (x,—7) 2

+7’11u2]dt (30)

where H equal to 0 and r;,, r,(which equals
to 0) are the desired values of the state
x;, %, (position and velocity) and q, 4.
are elements of weighting matrix Q.

Thus the matrix @ is

qn 0 0 0 0
0 q2 0 0 0
Q=0 0 0 0 0| (31)
0 0 0 0 0
0 0 0 0 0
By adjusting the element values, we can

weigh relative importance of the deviation
of each states from their desired values.
These values should also be adjusted to
normalize the numerical values encounte-
red. We can normalize them by comparing
closed-loop transient responses of the sta-
tes. By examining the results of analog
computation of the system in Eq. (1), with
an appropriate amplifier gain Ka, we know
that the
equal to 2~3 in the time interval (¢, ¢/ J.
Hence to normalize the numerical values,

ratio (x;—7,)/{x.—7;) becomes

we make the ratio between ¢, and g
equal to 2~3. The analog simulation is
shown in Fig. 4.

Fig. 4. Analog simulation of the
electrohydraulic servo

To avoid placing bounds on admissible
controls or to conserve the control energy,

we keep 7, not zero. In this paper, three
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Table 3. F, V obtained

case fi Sz fu fs 14
i) —0.7038 —0. 3634 —0.017 -0.7933 —0. 1442 0. 1408
i) —1.580 —1.138 —0. 05464 —1.9214 —0.2936 0. 3159
ﬁi)_ —2.738 —1.875 ~0. 0894 —2.676 —0. 3758 0. 5476

cases are considered, i.e. when

i) 4u=1 gn=2

i) gu="5 g»=15

iii) g11=15 ¢.»=30
for each case r;;=2.
With the system input r,=2 volt, the
state equation and the performance index,
the Riccati equation (4) and boundary
condition (6) are expressed as

K(t)=K({)BR'B"K(t)
—K({)A—-ATK(t)—Q (32)
K(t,) =0. (33)

Using the method in section 4-1, the steady
state solution of the above equation is
obtained and by substituting the solution
into equation (15) F matrix is determined.
By equation (16) and by obtaining the in-
verse of the matrix GT, V matrix also can
be determined. The solutions are shown in
Table 3.

With the system input r,=2 volt (step
input) the transient responses are obained

Fig. 5. Block diagram of optimal system

with analog computer by the method in
section 4-2. They are compared with those
of P.W.M.
block diagram of the optimal control sys-
tem are shown in Fig. 5. Performance in-
dex curves are also obtained with analog
computation by the method in section 4-2.
They are also shown with those of P. W. M.
system to compare the theoretical perfor-

electrohydraulic system. The
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Fig. 6. Transient responses when ¢;;=2, ¢~=5
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“or ——-P.W.M
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Fig. 7. Transient responses when ¢,,=5, ¢,,=15
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mance concretely,

Among the responses of the five state
variables, position, velocity and accelera-
tion of the load with respect to time in
caSes of i) and ii) among the three cases
and the performance
shown in Fig. 6~7.

index curves are

4. METHODS OF COMPUTATION

4-1. Solution of optimal control law

There are various methods for numerical
solution of Riccati equation. Theses are
direct integration method, the Kalman-
Englar method and’ the Newton-Raphson
method and etc. ®. In this paper, the
Runge-Kutta method is used. By Runge-
Kutta method the Riccati equation with
final boundary values can be solved back-
ward. It may be regarded as the steady
state solution when the difference between
the values at a stage and next stage is less
than the error bound e.

after the K matrix and F vector are
obtained, (G7)™! is computed. In computa-
tion of K matrix, subroutine “R.K.G.S.”
which uses Runge-Kutta-Gill method, is
applied. The inverse of GT is obtained with
subroutine “M.I.N.V” which employs the
standard Gauss-Jordan method.

L.B.M 360 computer is used in this com-
putation®,

4-2. Transient responses and
Performance index

After time scaling is made (1 mechanical
sec is equal to 1/100 sec), the plant descri-
bed in equation (1) is simulated to patch
up. To avoid overloadings, magnitude
scaling is made. By magnitude scaling, 1
volt in this problem is set 0.25 M. U..

Z % 2 4 9

‘At first, the plant X=AX-+BU is patched
up and with suitable amplitude gain %,=
0.04534, and step input »,=2 volt, the clo-
sedloop responses are obtained to normalize
numerical values of position and velocity.
The optimal control system described in
the block diagram is patched up by corres-
ponding adding circuits.

To calculate the performance index,
equation (30) is also simulated and added
to the optimal control system.

Ry changing F matrix, YV, and g, gz
with potentiometer, the transient responses
and performance of the three cases are
obtained. '

The same procedures are also repeated in
the case of P.W.M. system, except that
circuits corresponding to the modulator are
made instead of optimal controller.

In computation ANDO 401 model is used
and an X-Y recorder is employed in recor-
ding the computed values.

5. RESULTS AND DISCUSSIONS

The results of this paper are shown in
Fig. 6(a)~7(d). Fig. 6(a) shows the tran-
sient responses of the displacement x,(?) of
the mass in case i) indicating that the
response characteristics of the optimal
control system is like the system with
dead-beat performance. It has almost no
overshoot and oscillation and rapid respon-
se having transient period of about 80
msec., while the P.W.M. system has 21%
overshoot and oscillation, whose transient
period is almost 160 msec. It apparently
P.W.M.
system. Fig. 6(b) shows the transient res-
ponses of velocity v, of the mass in case

i), indicating that the deviation of velocity

shows superior response to the
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from the reference value 0 is much léss
than that of the P. W.M. system and goes
quickly to 0 without steady state error.
The transient period in this case is also 80
msec, while that of P. W.M. is 130 msec.
Fig. 6(c) the the
acceleration. The acceleration of the mass

shows response of
is a little larger and sharper than that of
the P.W.M. system. This behavior can be
expected from the fact that larger accelera-
tion i3 necessary to decrease the velocity
fast. The transient period is the same as
Fig. 6(d)
shows the performance indices of two sys-
tems which indicate the results that the

those of position and velocity.

value of J described in equation (30) of the
optmal system is less than that of P.W. M.
system. The reason could be that the per-
formance index J of the equation (30) is
used to measure the accumlated deviations
and deviations of the state variables of the
P.W.M. system from the reference values
are larger than those of the optimal system
(b) and (c¢) of Fig. 6.
When ¢, and g, increase with r,, fixed,

as shown in (a),

the deviations of the velocity of the optimal
system become smalier and the accleeration
curve become sharper accordingly while
the responses of the position are almost the
same. The transient periods are shortenad

a little (5 msec).

We may determine from these results
that, except for the case when the charac-
teristics of the velocity are needed to be
particularly excellent, it is not necessary
to increase ¢, and ¢,, because larger g,
needs more control effort and the tendency
of the acceleration to become sharper and
more impulsive is not desirable.

From the above results it may be con-
cluded that;

9.

. Nobaru Tominary,
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(1) The responses of optimal control sy-
stem are less oscillatory and rapid
than those of the P. W.M. system.

(2) When weighting factors g, and gz
increase, the responses of the velocity
are a little improved, while the res-
ponses of the position remain almost
the same.

(3) The increase of the value of the
weighting matrix elements is not ne-
cessary and desirable.

(4) With the performance index defined
in this paper, the optimal control

system is by an approximate rate of

up to 35% superior to the P.W.M.

system.
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