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ON OSCILLATORY PROPERTIES OF FUNCTIONAL 

DIFFERENTIAL EQUATIONS 

By Hiroshi Onose 

1. Introduetion 

Consider the folIowing functional differential equation 

(A) (r(t )x'(t) i n- 1)+f(x(g(t)), t) =0. 

For equation (A), the following conditions and nbtations are assumed to hold 

throughout the paper: 
c。

(a) r (t) is continuous and positive for t>O and I부ζ =∞; 

(b) f(y, t) is continuous for Iy I <∞， t>O and yf(y, t)>0 (y ,,':O) for t>O; 

(c) g (t) is continuous for t>O, g(t)드t and lim g (t) =∞; 
t-∞ 

(d) 
1 」 -t-2 1 

p(t)=강펴피 하s) ds and R싸t)= 기 T , ‘ ” , d 
m 

-삼
 -
써
 

m=O, l , ..• , 

n-2. 

Recently, Singh[5] and Kusano and the present author [2] studied the oscilla­
tory properties of equation (A). Here, we discuss the more general oscillatory 

properties of equation (A). We restrict our attention to solutions of (A) which 

exist on some ray [to' ∞) and are nontrivial in every neighborhood of infinity. A 

solution is said to be oscillatory if it has arbitrarily large zeros, otherwise. it is 

said to be nonoscillatory. Equation (A) itself is called oscillatory if all of its 

solutions are oscillatory. 

2. OseiIIation theorems 

First we mention the following elementary 

LEMMA. Let x(t) > 0 be a solμ#on of equahon (A). Put r (t )x'(t) =y(t). then. 

for 1z even, there exists an even 싫teger 1(0드l드n-2) sμch that 

(i) y(t)U)늘o for j=O, 1, ... , 1, (_1)n+i-2y(t)U)늘o for j=I+1, . 

for n odd, the1'e exists an odd z'nteger 1(0드l드1Z -2) sμch that 

(ii) - (1) y(t)(j)는o for j=α 1, ...... 1,. (_1)n+i-2y(t) (i)늘o for j=l+l, 

n-1 

... , 
%一 1, 
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or 

(ii) (2) (-1)i+ 1y(t)(j)르o for j =0, 1, ...... , n- 1. 

F z"nally, the fo l!owz"ng z"nequalz"ty holds for n even or odd, 

(ii i) x(t)드Ap(t)， where A Z"S a constαnt. 

PROOF. From equation (A), we have y (t) (n-1)드α so that it follows that 

y(t)늘o or y(t)드o eventually. For n even, we have y(t)르O. If we suppose that 

y(t) <α then, by Kiguradze’ s Lemma [1] or by a simple computation, we have 

that y'(t)드O. This leads to r(t)x'(t)=y(t)드y(T) <α so that we obtain 

x(t)르x(T)+y(T기-L- ds→-∞ J γ(!서 
T 

‘ 

This is a contradiction to x(t) being positive. For n odd, if y(t)르0， then it 
reduces to the above case, if y (t) <0, then it follows that (ii)-(2). By repeating 

integration of y(tin - 1)드0， we have that 

r (t )x'(t) = y(t)드Ctn-2， where c is a constant. 

From this we obtain 

x(t)드씬츄윤 ds=Ap(t), where A is a constant. 
T 

REMARK. Analogous statements of Lemma hold for x(t) <0. 

THEOREM 1. Suppose that 

(e) f(x, t)/x Z"S nonincreasing for al! x>O and t> α 

(f) there is an e>O such that x-1
+e f(x, t) is nonincreasing in x, 

and 

(g) R(2)(t )>Mp(t), for some posz"tive constant M. 

Final!y, assume that 
。。

f(cp(g(s)) , s)ds=∞ for any constant c. 

Then, eνery solutz"on x(t) of (A) z's osâl!atory for n even and is osâllatory 0γ 

lim x(t )=O for n odd. 
t-.oo 

PROOF. (The case n even). We assume the existence of a nonoscillatory solution 

x(t);i: O of equation (A). Without 10ss of generality, we can assume that x(t)>O 

eventually. Hence, we consider the following two cases: 
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Case (i), (r(t)x'(t))'三0;

By Kiguradze’ s Lemma [1 ], we have that 

r(t)x'(t)> B 1t• 2(r(t )x'(t)i • 2), . for some positive constant B 1• 

By integration of the above inequaIity from to to ι we obtain 

(1) x(t)=Bp(t)(7(t)f(t)) [u-2), for some B>0. 

Case (ii), (r(t)x'(t))'드0: 

By ir. tegration of (A) multiplied by R2(t), we have 

(2) (r( t)x'(t ))Cn-2) R(2) (t) ~ (r (t)x'(t)) (n-3) R Cn - 3)(t)+ ...... 
+ (-1)n-1(7(t] f(t)YR(1)(t)+(-1)”7(t)f(t)R(0)(t)+(-1)n+1X(t)

t 

+./R(2) (s)f(x(g(s)), s)ds=K, where K is a constant. 
T 

From (2), we obtain 

(3) x(t )>(r(t)x'(t))Cn-2) R(2Þ)르c(r(t)x'(t))C←2)p(t)， for some c>O. 

From (1) and (3), we have 

(4) x(g(t))는Dp(g(t))(r(t)x，(t))(n-2)， where D=min(c, M). 

By Lemma, (4), (c) and (f), we get 

(5) (-((r (t )x'(t)/n-2)))'=e((r(t )x'(t)/n-2))-1+ ef(x(g (t)), t) 

=e((r(t)x'(t))Cn-2))← lX(g(t))1-ex(g(t))-1+암(x(g(t))， t) 

르e(r(t)x'(t) C"-2)) -1 +e(Dp(g(t)( (r( t)x'(t)) (n-2))1-e(Ap(g(t))) -1 +암(Ap(g(t))， t) 

= Kf(Aρ(g(t)， t), where K is a constant. 

By integration of (5) from to to t , we have 
t 

((r(to)x' (tO))C,, -2)y - ((r(t)x'(t))Cn-2)y는K I f(Ap(g(s)) , s)d.'-" 

which Ieads to a contradiction that 
。。

(6) f(Ap(g(s)) , s)ds<∞. 
t, 

(The case n odd). If the case of Lemma (i), we have a contradiction (6) as 

same argument of the above one. If the case of Lemma (ii), then, from (2), 

(g), the boundedness of x(t) and Iim x(t)~O， we obtain 

∞> 

t→∞ 

f (x(g(s)) , s) 
R(2)(S)X(g(S)) J \."'xè~(;)) "/ ds=. 

。。

MKf(Ap(g(s)) , s)ds. 
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which is also a contradiction. 

THEOREM 2. Suppose that (e) 0 1' 

(h) f(x. t) isnondec1'easing in x fo1' all x>O and t>O. 

Theκ a necessary and sufficient condition /01' (A) to have a nonoscill atory 

solμtion whz'ch is asyηzptott"c to ap(t). a낯O. as.-• 。 is that 

。。

(7) f(cp(g(s)). s)ds<∞ fo1' some c~O. 

PROOF. (Necessity). We may assume that x(t) be a positive soliItion of (A) 

which satisfies 

(8) c1P(g(t))<x(t)드c2p(g(t)). for some constants cl' c2 and for t늘10. 

By integrating (A) from to to t we have 

(9) (1'(t))x'(t)in- 2
) - (1'(t，이x'(to)in-2) + f(x(g(상). 성ds=ι 

which leads to 
。。

(f(x(g(s)). s)ds<∞. 
t, 

From this and (8). it follows that 
。。

f(c1P(g(s)). s)ds<∞ in case (h) 
t, 

and 
c。

Cl 
f(c2p(g(s)). s)ds<∞ in case (e) • • 

o t 。
ι
 

C 

(Sufficiency). Put a=c/2 or a=c according 

respectively and consider the integral equation 

as m case (h) or in case (e) 

1 
(10) x(t) =ap(t)+ I 휴꾀J ...... J \ J f(x(g(sl))' sl)ds1)ds2 ...... dsn• 

T . ... T T 5, 

where T is chosen so large that 
c。

(11) f(cp(g(s)). s)ds<a<∞. 
T 

lt is clear that a solution of (10) is a solution of equation (A). Let -r =inf {g(t) I 
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t늘T} and denote by Cp [τ ∞) the linear space of all continuous functions X: [τ ∞) 

• R such that sup {p(t) -21 X(t) 1: t르't'} <∞. 
If we define IIxllp=sup{p(t) -2Ix(t) I: t>'t'}， XεCp[T， ∞). then we can see 

easily that x• 11 x 11 p is a norm with which C p ['t'. ∞) = Y is a Banach space. 

Consider the subset X of Y satisfying 

(12) X= {xεYlap(t)드x(t)드2ap(t). t르't'} • 
Clearly. X is bounded, closed and convex subset of Y. Define the operator φ 

such that 

‘‘ 댁
 
1 

싫
 

·fL 

-
/
‘
、

<-t

‘ 
‘ 
7 

f” 

ι
 

l’’ 

, 

+ 

” 
” 

M 

M ]
「

” 
/
，
‘
、

、
찌
 

φ
 

/
，
‘
、페

 

/
l‘
、

s， o。

/(X(g(Sl))' sl)ds1 )ds2 •••••• dsn• t르T. 
T T T s, 

Clearly. φ is well-defined on X. We shall show that φ is continuous and maps 

X into a compact subset of X. 

i) φ maps X into X. If xεX. then (φ씨(t)르ap(t). t드't' and 

(φx)(t)드ap(t) + I 구(Sn) 
T T 

n, 
•••••• (a)dS2------ds” 

T 

aS_'’一2n
Eap(t)+l 7(s” );%-2)! dSn드2ap(t). f야 t드't'. 

T .. 

ii) φ is continuous. Let {Xn}CX be a convergent sequence to x: lim 11 장-x 11 =0‘ 
n-><>。

Since X is closed. xεX. By the defintion of φ. we see that 
t s. S, c。

(14) I(φxn)(t)- (φx)(t) 1 드J구r릎 
T ‘ ... T 

•••••• G,,(sl)ds1 )ds2 ...... ds,.. 

T S, 

where 

(15) G ,,(sl) =?"/(xn(g(sl))' sl) - /(X(g(sl))' sl) 1 드4/(CP(Sl)' sl)' 

By (14). (15) and (7). we have 
。。

\
시
 

eu 
，
생
 

… a4 
eu 

a 

G 

S 
• 

‘ 
서
 
vT 

• 

“ 
… 

’T 
(16) I(φxn)(t)-(φx) (t) 1 드(J Gn(sJ )ds1 

T 

< Gn(sl)ds1 
’i 

cu 서
“
 

、
l
l
/

CV /
，
‘
、

n 
G ∞

 씨
v
 
T 

/
1‘
、디r l

ψ
 

s J“ 
4 

-
상
 

t 

7k 
sn 

-
꾀
 

--I 
t 

T 

00 

l ‘ 

Hence. we find 
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(17) 縣-φxllp드해ppm -2p(tY Gx(S1)dSl드P(f)-k Gx(S1)dSl· 
.“ T T 

Observing that lim Gn(Sl)=O, which is a consequence of the convergence Xn• x 
n-+o。

in C p [-r, ∞)， and (15) and (7), we conclude from the Lebesque dominated 
00 

'Convergence theorem that 1im Gn(sl)ds1 =0. Consequently, from (17) 
n→∞ T 

1im ! φx，，-φxllo=O， proving the continuity of φ. 
I12-tOO 

. 

iii) φ is compact. According to a theorem of Levitan [3] it suffices to show 
that, for any given e> 0, the interval [-r, ∞) can be devided into a finite 

number of subintervals in such a way that the oscillations on each subintervaI 

of all functions pφx， xεX are less then e. 
The first, we examine the behavior of pφx on the interval [T, ∞). ft hoids 

that if t 2>t1>T, then 

(18) (p-2.φx)(t2)-(p-2φX)(t1) =a(p(t2) 
-1_ 

P(t1) 
-1) 

5a .0。

+p(t2)-2f-L !(X(g(Sl))' sl)' ds
1 )ds2 

...... dsn 
T - 、 -n-' T T 5, 

-p(t1)-y서s . .) J ..... J ( J !(X(g(Sl)' sl)ds1)ds2 
...... dsn• 

T ‘ n- T T 5, 
It follows that 

(19) I (p-2φ'x)(t2)-(p一2φ씨(t1) I 드2ap(t1)-1 
。。 t, 5. 5, 

+P(t2) -2( Jf(cp(g(Sl)), sl)dSl 
T T 

Y(헬 J 
d헌 dS

Il 

c。

+P(t 1)-2(J f(cp(g(S1)), sl)dSl 
T 

t, 5. 5, 
ds2 ...... dsn 

T 

=2ap(t1) -1 + (P(t2) -2 P(t2) + P(t1) -2 P(t1)) (i(CP(g(Sl))' sl)ds1 
T 

드4ap(t1)-1. 

Noting that P(t1)-1• o as t1→∞， we conclude from (19) that there exists t*>T 

such that for all xεX， 

I (p-2φX) (t2)-(p-2，φX) (t1) I <e if t2>t1> I*, 
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-2 
so that the oscillations of all P φ on [t*, ∞) are less than e. Let T드t1드t2드t*， 

then from (18), we obtain 

(20) I (p-2φX)(t2)-(p-2φX)(t1) I 드a I P(t2) -1_ P(t1)-1 1 

+P(t2) -2f-구&;rJ J (Jf(X(g(S1)), sl] dS1 )dS2 ·ds” 
1, - W T T 52 

+ |P(t2)-2-p(tl)-2lf놨rJ - ---M f(X(g(Sl)), sl)dS1)dS2 • d% 
rv T T 52 

c。

드 !αP(t2)-1_P(1)-1 1 +p(T)-2 , j(CP(g(S1))' s1)ds1 
T 

00 

1, 
1 

t 7(Sn) l ------l dS) 
1 ",- T 

t ‘ T 
S,. 58 

-2 ,( r \ (r 1 I 
".dsn )+ Ip(t2)-<--p(t1)-<-I( / f(cP(g(S1))' s1)dsd( / "，(응τ / ... / ds2 ... dsn ). 

“ ’ ‘ - . 、‘n/ ~ T T -,‘ , T 

This inequality ensures the existence of δ> 0 such that for all xεx 

I (p-2φX) (t2)-(p-2φX)(t1) I <e if t2- t1 <δ. 

A similar argument holds regarding the oscilIations of p-2φx， on [τ T]. 

Hence, it foIIows that the whole interval [τ ∞) admits a decomposition into a 
finite number of subintervals on each of which all functions p-2φx， - xEX, ha ve 

oscilIations less than e. 50 that by applying 5chauder’s fixed point theorem, we 

have an xεX of a fixed point of φ. Then, by the definition of φ， x(t) is a 

solution of equation (10). 50 that, we can see easily that x(t) satisfies 
(21) lim (x(t)lp(t))=a. 

Hence, x(t) is a solution of equation (A), which tends to ap(t). 

THEOREM 3. Suppose that (e) or (h). Then a necessary and suffz'dent condz'Uon 

for (A) to have a nonoscz'llatory solμtz'on whz'ch is asyηzpto#c to a( ~O)， as t→∞ 

z's that 

00 

(22) fR2(s)f(ι s)ds→∞， for some c>O, 

PROOF. (Necessity). We may assume thatx(t) be a positive solution of (A) 

which satisfies that 

(23) c1드x(t)드c2 ' for some positive constants c1 and c2 nad for t늘T. For n 

even, from Lemma, we have r(t)x'(t)능o and (r(t)x'(t))'드O. 

If not, then we ha ve 
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x(t)르x(T)+ r(T)x'(T) 펠、 , 
T 

which Ieads to a contradiction to (23). So that we have 
(j) (24) (-ly (r(t )x'(t)) 늘α j = 0, 1, ••.•.. , n -1. 

For n odd, from Lemma and the same argument of the above one. we have (24) 

or 

(25) (-1)i+ 1(r(s)x'(t)) (j)>O. j=α 1, ...... , n -1. 
By intergration of (A) multiplied by RzCt), we obtain (2) for n even or odd. 

So that, by considering of (24), (25) and (2), we obtain 
00 

R 2(s)f(x(g(s)) , s)ds<∞. 
T 

From this and (23), we have that 

T 

and 

00 

R2(s)!(Cl' s)ds<∞ in case (h) 

00 

Cl I R2(s)!(c'l! s)ds<∞ in case (e). 
C2 T 

(Sufficiency). Put a=c/2 or a=c according as in case (h) or in case (e) res­

pectively and d=2a if n even and d=a if n odd. Consider the integral equation 
00 。。

(26) x(t)=d十 (-1)n+y」 v (μ-s)n-ι 
←-，τ-f(x(g(u))， μ)duds. 

s 

It is clear that a solution of (26) is a soIution of equation (A). Let T be 

chosen so Iarge that 
c。

('2:l) R2(s)f(c, s)ds<a. 
T 

Let 1:=inf {g(t) I t늘T} and denote by C [τ ∞) the linear space of aII continuous 

x: [1:, ∞)→R such that sup {i x(t) I:t늘1:} <∞. 

If we define Ilxll =sup { I x(t) 1: t>1:}, xεC[τ ∞)， then we can easiIy see that 

x• Ixll is a norm with which C [1:, ∞) is a Banach space. Consider the set X of 

alI functions xεC[τ ∞) satisying 

(28) a드x(t)드2a on [1:, ∞). 
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Clearly, X is bounded. cIosed and convex subset of C [τ ∞). Define the operator 
φ suth that 

(29) 
s 

] 

-
써
 

니
 
’ 

T 

H U H ’ a 

-­A 

υ
 

싸
 

φ
 

/ , 
、

월펴仁2 f(X(g(μ))， u)dμds， for 't'드t드T， 

。。

00 [ 

-
、
U S 

J 

-
κ
 

l 
t 

un U /l\ + ,a 웅찢二n!ζE f(X(g(X)씨μds， for t>T. 

(30) 

The following inequality 

∞ ∞(μ-s)”-2 
t 7rgJJ-(%L 2)j- f(X(g(μ))， μ)dμds 

∞ u n-2 ∞ 
fl (' (zι- .이 

J “’?’(s)(n-2)!.- ‘ Y 、~、6 ,-././’ ‘/…-극 

shows that (29) is well-defined. We shall show that φ is continuous and maps X 

into a compact subset of X. 

i) φ maps X into X. If xεX， then we have 
00 

d드(φx)(t)드d+ I R2(μ)f(x(g(μ))， u)du, for n odd. 
T 

(31) \ and 
00 

00 

(32) I(φxn)(t)- (φx)(t) 1 드J R2(μ)AIl (μ)du， 
T 

where 
(33) An(μ)= If(전(g(μ))， μ)-f(x(g(μ))， μ)1 드4f(ι μ). 

Observing that lim An(κ) =0, which is a consequence of the convergence 전→x in 
n--+o。

C ['t', ∞) and (33) and ('2:7), We conclude from the Lebesgue dominated conver-
00 

n→∞T 

R zCu)An(u)du=O. From this, we have lim 11φxt-φxll 
IZ-~O。

gence theorem that lim 

=0, proving the continuity of φ. 
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(II) Iim y(i)(t)~O. for some iε{O. 1. . .....• κ-2}. 
t→。。

In this casξ we have 
ø_? 0。

(43) r(g(t))x(g(t))늘 (g(t) - g(tf))… ~r f(x(g(s)). s)ds 
(t-2). t 

and from this. we obtain 
t g(s) n 

(싫) X(g(t))는{ (-9r-힘?2?:김vf(x(g(s)). 상ds 
t. g(t.) 、

R 1(g(s))f(x(g(s)). s)ds. 

From (44) and by the same argument of Case (1). we have 
00 

(45) R1(g(s))f(ι s)ds<∞. 

Case iO: r(t)x'(t)드O. 

In this casξ we see that the case for n odd. By integration of (A) multiplied 

by R2(t). we have (2). from which we obtain 

00 
• 

(46) R2(g(s))f(ι s)ds<∞. 

THEOREM 5. SχPψose that g'(t)는o and (i). If 
。。

(47) R2(g(s))f(c. s)ds=∞ for any c>O. 

then. eνery bounded solution of (A) is oscillatory for n even and is oscillatory or 

monotonically to zero as t→∞ for n odd. 

PROOF. From the proof part of Theorem 4. we see that the Case (II) does 

not happen. So that. Theorem 5 is proved. 

REMARKS. It is noted that our theorems contain the cases for f(y. t) being 

sublinear or superIinear. For n=2, our theorems are identical to the one’s of 

( [4]. Sec. 2). 

lbaraki University 
Mito. Japan 
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