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ON OSCILLATORY PROPERTIES OF FUNCTIONAL
DIFFERENTIAL EQUATIONS
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1. Introduction

Consider the following functional differential equation

(A) (r®Ox' )"V +f(2(g@®)), t)=0.

For equation (A), the following conditions and notations are assumed to hold
throughout the paper:
r ds

7(s)
(b) f(»,t) is continuous for |y|<oo, >0 and y/(y, £)>0 (y20) for ¢>0;

(c) g() is continuous for >0, g(#)<t and lim g(¢)=o0;
[ —o0

(a) 7(¢) is continuous and positive for >0 and =00

— - d R N -—S) i} —
D oD L f - s and (m)(t) " s S ds, m=0,1, ...,

n—2.

Recently, Singh[5] and Kusano and the present author (2] studied the oscilla-
tory properties of equation (A). Here, we discuss the more general oscillatory
properties of equation (A). We restrict our attention to solutions of (A) which
exist on some ray [to, oo) and are nontrivial in every neighborhood of infinity. A
solution is said to be oscillatory if it has arbitrarily large zeros, otherwise, it is
sald to be nonoscillatory. Equation (A) itself is called oscillatory if all of its
solutions are oscillatory.

2. Oscillation theorems

First we mention the following elementary

LEMMA. Let x(¢)>0 be a solution of equaiion (A). Put r()x'(t)=y(t), then,
for n even, there exists an even integer [(0<I<n—2) such that
@ yOP>0 for j=0, 1, ..., I, (=" DP>0 for j=i+1, ..., n—1
for n odd, there exists an odd integer [(0<I<n—2) such that
(i) — (@) yOV=0 for j=0,1, - 5, (~D"7 20D >0 for j=l+1, ...,
n—1,
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oy

(D)—(2) (=1 ly®P=0 for j=0, 1, -, n~1.
Finally, the following inequality holds for n even or odd,
(i11) 2(2)<<Ap(t), where A is a constant.

PROOF. From equation (A), we have y(¢) (n—1) <0, so that it follows that
y(#)=0 or y(+)<<0 eventually. For # even, we have y(¢)>0. If we suppose that

y(¢)<0, then, by Kiguradze’s Lemmal[l] or by a simple computation, we have
that y"(#)<<0. This leads to 7(#)x’ () =y()<y(T) <0, so that we obtain

¢
x(t)_"'\:x(T)—l—y(T)f r%s)ﬂ ds——oo, as t—co,
T

This is a contradiction to x(¢) being positive. For z odd, if y(#)=0, then it
reduces to the above case, if y(Z) <0, then it follows that (ii)-(2). By repeating

integration of y(z‘)(”’_l) <0, we have that
y(Dx'(E) = y(t)ict”_z, where ¢ is a constant.

F'rom this we obtain

¢
7n-—2
x(t)S_Af* :(S) ds=Ap(t), where A is a constant.
T

REMARK. Analogous statements of Lemma hold for x(#) <0.

THEOREM 1. Suppose thai

(e) f(x,t)/x is nonincreasing jfor all x>0 and >0,

(f) there is an € >0 such that g Lte f(x, 1) is nonincreasing in x,
and

(g) R(z)(t)sz(z‘), for some positive constant M.

Finally, assume that

f f(co(g(s)), s)ds=oo for any constant c.
Then, every solution x(t) of (A) is oscillatory for n even and is oscillatory or
lim x(¢)=0 for n odd.

1—ro0o

PROOF. (The case # even). We assume the existence of a nonoscillatory solution

x2(1)#0 of equation (A). Without loss of generality, we can assume that x(£)>0
eventually. Hence, we consider the following two cases:
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Case (1), (r(O)x’(2)) >0;
By Kiguradze’s Lemma/[l], we have that

r(t)x"(t)zzBlf”_z(r(t)x’(t))(.“_2),- for some positive constant B,.
By integration of the above inequality from Zy to #, we obtain

(1) 2(O=>Bo®)(rO)x($))* 2, for some B>O0.
Case (i1), (r(Ox’())’<0:
By integration of (A) multiplied by R,(¢), we have

OGO IO N NGO L) N FPNG) ERE
-+ (-—1)”‘1(r(t)x’(t))’f?<1)(t)+(—1)”r(z‘)x’(t)f?(o)(t)+(—1)”+1x(t)'

4
+ f}?(z)(s)f(x(g(s)), s)ds=K, where K is a constant.
T

From (2), we obtain

(3) 2O=r® PR (DZc(r(Dx )" Dp(t), for some c>O.
From (1) and (3), we have

(4) z(g(1))=>Do(g())(rDx’(#)?* %, where D=min(c, M).
By Lemma, (4), (c) and (f), we get

(5) (—((rOx @) )Y =e((rD)x @)~ e (x(g(D)), )
=e((r(Ox’ ()2 e (g () e x(g () 1T F i g (D), )

>e(r(Ox' ") T De(g (D () @) P21 (A0(e(1))) T EF(Ap(g (D)), £
=Kf(Ap(g(t),t), where K is a constant.
By integration of (5) from £, to ¢, we have

(r(tx GNP PY = ((r(Dx DY =K [ F(Ap(e(s), )d*
Lo

which leads to a contradiction that

(6) [F4o(g(s), ds<co.
bo .

(The case # odd). If the case of Lemma (i), we have a contradiction (6) as

same argument of the above one. If the case of Lemma (i1), then, from (2),
(g), the boundedness of x(¢) and lim x(#)#0, We_obtain

I — 00

o> f Ry ()(g ()L ("f%((ss)))j S)_gs= [ MEf(40(g(), $)ds
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which is also a contradiction.

THEOREM 2. Suppose that (e) or
(h) f(x,t) is nondecreasing tn x for all x>0 and t>0.
Then, a necessary and sufficient condition for (A) to have a nonoscillatory

solution which is asymptotic to ao(t), a#0, as .— o is that

(7) f flep(g(s)), s)ds<$o for some c*O0.

PROOF. (Necessity). We_may assume that x(t) be a positive solution of (A)
which satisfies | |
(8) c;0(g(EN=<x(t)<c,0(g(?)), for some constants c, c, and for ¢=>¢.

By integrating (A) from ¢, to ¢ we have

!
O W ENT D= (x4 +[ f(x(g()), Dds=0,
2

which leads to

f (f(x(g(s)), s)ds<oo.
lo

From this and (8), it follows that

J Feip(a(), $)ds<oo in case (b
2

and

Cl - .
_E; f!‘ f(czp(g(s)), s)ds<oco in case (e).

(Sufficiency). Put e=¢/2 or a=c according as in case (h) or in case (e)

respectively and consider the integral equation

! Se

(10) *(O=a0®+] 5oy [ =] ([ FCaaCs)), 5ds, )dsyrwds,
T 5o

where T is chosen so large that

(11) [ Feolg(), Hds<a<oo.
T

It is clear that a solution of (10) is a solution of equation (A). Let t=inf{g(#)]
\
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t>T} and denote by C o [T, 50) the linear space of all continuous functions x: [z, o©)
—R such that sup{o(®) ~%|x(t)|: =1} <co.

If we define lellp==sup{p(t)"zlx(t)l: tzr},xECp[r, o), then we can see
easily that x— IIpr 1Is a norm with which C [7,00)=Y is a Banach space.
Consider the subset X of ¥ satisfying

(12) X={x€Y |ep(®)<x(1)<2ap(?), 1=1}.

Clearly, X is bounded, closed and convex subset of Y. Define the operator @
such that

(ao(t), T<<t<T,

(13) (Px)(2) = S 5
x xap(t)-{-f }»(sl,,) f"---f(ff(x(g(sl)). sl)dsl)dsg ------ ds,, t=T.
T T T s,

Clearly, @ is well-defined on X. We shall show that @ is continuous and maps
X 1nto a compact subset of X.

i) @ maps X into X. If x&X, then (Pv)(#)>=ap(t), t<t and

n

{ 1 Sh 27y
(@x)(f)iap(t)—l—f r(s,) ff (@)ds,+--ds
T T T

s n—2n

‘ a
<ao()+ Tf G G=DT d5,<200(t), for 1<r.

ii) @ is continuous. Let {x,}CX be a convergent sequence to x: lim || x,—x | =0.

1—rO0
Since X is closed, x&X. By the defintion of @, we see that
! Sa Sy ©0
(14) (P, )()— (@D O [f( [ G, (s)ds, sy ds,,
T T T S,

where
(15) G, (s)=Af(x,(&(s)), s)—f(x(g(s), s 1<4f(co(s)), )
By (14), (15) and (7), we have

(16) 1(@x,)(O)~ (@D <( fmG,,(s, s, )( f e f.'...‘.f;sz ...... ds, )
T T e T T

s s n—2

<(J Gn(sl)dsl)q"r(s,j‘(n:2)!'"“""’3:)=p(’)f G545,
1 T

Hence, we find
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(7) |0, ~Pxl,<supo(t)~ p(t)f G, (s)ds,<p(?) f G, (s,)ds,.

Observing that lim G,(s;)=0, which is a consequence of the convergence x —%

n—0D

in C [7,00), and (15) and (7), we conclude from the Lebesque dominated

convergence theorem that Ilim f G,(s,)ds;=0. Consequently, from (17)

1n—00

lim [ ®x, —-@xll =(, proving the contmulty of Q.

$—00

iii) @ is compact. According to a theorem of Levitan([3] it suffices to show
that, for any given €>0, the interval [7,o0) can be devided into a finite
number of subintervals in such a way that the oscillations on each subinterval

of all functions p®x, x&X are less then e.
The first, we examine the behavior of o@x on the interval [T, oo). It holds

that if ¢,>¢,>7T, then
(18) (0" Bx)(t,)— (0~ Bx)(tD =a(p(t) " ~p(t)™H)

! Su Sy OO
+p(;2)—f7(ls) ff( ff(x(g(sl))’ s, dsl)dsz coneeeds,

__p(tl)“'f o ff( ff(-""(g(sl) s,)ds, )dsz ......

It follows that
(19) |(p‘2®x><t2>—cp‘2@xxr1>lszap(rl)"l

+0(23) _2( ﬁ(cp(g(sl)), sy)ds ) f 705D f f dsyeew-ds,
+0(t,)" ( f Feolg(sy), s)ds, ) f o f f dsy+eds,
T "M T

=2a0(t) "+t~ o) +0(t) ™ (1)) [Fcola(s)), spds,
T -

_'§4ap(t1)_1.
Noting that p(tl)“l—-ﬂ) as ¢,—oo, we conclude from (19) that there exists *>T
such that for all x&EX, |
(0™ 2Dx) () — (0™ ) (2] <e if t,>1,>1%,
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so that the oscillations of all puz@ on [f¥,o0) are less than e, Let T<¢,<{,<r*,

then from (18), we obtain
(20) (0™ D) () — o™ °Px)(t;) |<alo(t) =0t

+p(t2)_?ft2¢(i) f......fu(ffo(x(g(sl)), 31)51'31)d32 ..... ds,
) T T s,

t, S, Sy ©O

o) =) Uiy [ e[ ([ F@CeCsd sdsy Jdsyeeds,
T R T s,

00 {s Sn 33
<lep(ty) ™ —o(D™ \+p(T)"2( f F(co(g(sp)), sl)dsl)( f r(ls) f ----- f ds;
T £\ T T

t*

"'dsn)+ |0(%,) _z_p(tl)_zl(ff(cp(g(sl)), 31)531)(f7.(i.) f"'jladsz"'dsn)'
- T T T

This inequality ensures the existence of >0 such that for all x&X
(o 2Dx)(2,) — (0~ °Px)(t) | <e if t,—2,<0.

A similar argument holds regarding the oscillations of p_z@x, on [z, T].
Hence, it follows that the whole interval [z, o©) admits a decomposition into a
finite number of subintervals on each of which all functions p_zﬁx,_.- x&X, have

oscillations less than e. So that by applying Schauder's fixed point theorem, we
have an x&X of a fixed point of @. Then, by the definition of @, x(¢) is a

solution of equation (10). So that, we can see easily that x(¢) satisfies
(21) lim (x(£)/p(t))=a.

I—00

Hence, x(¢) is a solution of equation (A), which tends to ap(#).

THEOREM 3. Suppose that (e) or (h). Then a necessary and sufficient condition
for (A) to have a nonoscillatory solution which is asymptotic to a(#0), as t—oo
28 that

(22) [Rz(s)f(c, s)ds—co, for some c >0,

PROOF. (Necessity). We may assume that x(¢) be a positive solution of (A)
which satisfies that
(23) ¢;<x(t)<c,, for some positive constants c, and ¢, nad for =T. For =

even, from Lemma, we have r()z’()=>0 and (#(#)x’(£))’<0.
If not, then we have
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4

1 ()=>2(T)+7(T)x' (T) =25,
J 7(s)
which leads to a contradiction to (23). So that we have
(24) (=1 W ()P>0, j=0, 1, we, n—1.
For # odd, from Lemma and the same argument of the above one, we have (24)
or
(25) (T v E)>0, =0, 1, =, n—1.

By intergration of (A) multiplied by R,(f), we obtain (2) for # even or cdd.
So that, by considering of (24), (25) and (2), we obtain

f Ry(s)f (x(g(s)), $)ds <oo.
T

From this and (23), we have that

&8

f Ry(s)f(¢y, s)ds<oo in case (h)

T
and

S f R,y(s)f(cs, s)ds<oo in case (e).
CoT

(Sufficiency). Put @=c¢/2 or a=c¢ according as in. case (h) or in case (e) res-
pectively and d=2« if » even and d=¢ if # odd. Consider the integral equation

OO o0 yy—
(26) x(t):d—l—(—l)"ﬂf_'r (ls) f(?n—-s%)' F(x(g(®)), w)duds.
t s '

It is clear that a solution of (26) is a solution of equation (A). Let T be
chosen so large that |

(27) f R,(s)f (e, s)ds<a.
T

Let z=inf {g(?)|{=T} and denote by C[7, o) the linear space of all continuous
x: [T, o0)—R such that sup{|x(2)|:t=>1} <co.

If we define llxll=sup{|z(®)|: >}, x&Cl7,0), then we can easily see that
z— x|l is a norm with which C[z, o) is a Banach space. Consider the set X of
all functions x&C 7, o) satisying '

(28) e<x(#)<2z on [, o).
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Clearly, X is bouhded, closed and convex subset of C[z, o). Define the operator
® suth that -

co oo

d+ (=1t ré) E::_—_g:_ Fx(g(@)), w)duds, for t<t<T,
T s ) - |
(29) (Px)(t)=¢

oo

o n—2
xd—l—(—l)n+1tf r(ls) Ez:g' — f(x(g(n)), z;)duds, for t>T.

The following inequality
n—2

(30) tf r(ls)s -((’:;32))--_,—‘ F(x(g (@), w)duds

= {5 gspds ) F (e ), wdu<[ Ry(u)f(x(gw)), w)du

shows that (29) is well-defined. We shall show that @ is continuous and maps X
Into a compact subset of X.

i) ® maps X into X. If ¥&X, then we have

A<@D)O=d+[ Ry(w)f(x(g(w), w)du, for n odd,
(31) ( and !

'd — f R(u)f(x(g(u)), u)du<(Px)(t)<d, for » even.
> |

From (31) and the definition of d, it follows that ¢<(®x)(?)<2a.
1) @ is continuous. Let {x }CX be a convergent sequence to x: lim Ix —x[|=0.

n— 00

Since, X is closed, x&X. By the definition of @, we see that

(32) 1@ )0~ @D RA, Wi
T

where

(33) A (w=|f(x,(gCu)), w)—f(x(gw)), v) | <4f(c, u).

Observing that lim A,(#) =0, which is a consequence of the convergence » —x in

H—00

Clz,o0) and (383) and (27), We conclude from the Lebesgue dominated conver-

O

gence theorem that lim | R,(#)A (#)du=0. From this, we have lim [@x, —®x|

12— 00 12— 00

T
=0, proving the continuity of @.
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iii) We claim that @x is a compact subset of X. Since each @x is constant on
[z, T], we need only to examine the behavior of @x on the interval [T, o), An

easy computation shows that if ¢,>#>T, then

(30 1@t~ (@)D I<[ Ry@f(x(g(w)), w)du
o

o0 | 2
4 f Ro(u)f(x(g(u)), w)du+ f Ry(u)f(x(g(u)), u)du.
t !

As >0 in (34), we have that for any &>0, there exists * which is
independent of x, such that

|(@x)(2,)— (Px)(2) | <e, for t, t=t" and any xEX.

Let T<¢<t,<?*, then we have

(35) l(@x)(tz)—(@x)(tl)lfélf Ry(u)f (x(g(u)), u)du— f Ry(u)f(x(g(n)), u)du|
g £y

by
=| [ Ry (x(g (), wdul.
Zy

This inequality (35) ensures the existence of 0>0 such that for all xE X
|(@x) (10— (Px)(#|[<e, if #,—t;<d. Hence, it follows, that the whole interval

(7, 00) admits a decomposition it into a finite number of subintervals on each of
which all functions @x, ¥&X have oscillations less then e.

So that by applying Schauder’s fixed point theorem, we have an x&X of a
fixed point of @. Then, by the definition of @, x(¢) is a solution of equation (26)
which tends to d as t—oo.

THEOREM 4. Suppose that g’(£)=0, (h) and
(i) there is an €>0 such that g 1F f(x,t) ¢s mondecreasing in x, hold. If

f R, (g(w))f(c;, u)du=co and f R, (g(u))f(cy, u)du=oc are satisfied for any

¢.>0 and ¢,>0. Then, every solution of (A) is oscillatory for n even, and

osctllatory or monotonically to zero as t—oo, for n odd.

PROOF, Let x(¢) be a nonoscillatory solution of (A) with the property lim x(Z)#0.

{—0o0

Then, we may suppose x(¢)>0. In this case, from (r(t)x’(t))(”“l)go, we distin-
guish the following two cases:
Case (i): r(1)x"(2)=0.
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If we put y()=r&)x2"(¢), them y(t)=>0, y(”_.l) (1)<0. So that by Lemma, we
chtain the following two cases:

(D) (), @), e, ("2 converge monotonically to zero as f—oo, In this
case we have

(n—2)!

which occur only in the case for # even. By (36), we have

(36) (~D"r(g@)x (gt)=[ LD - £, s,
/

n—2

80 (g(t))>'(1/r(g(i)))_lf (& ()=80) fa(g()), 9ds.

~ By integration of (37) multlphed by g’(¢), we obtain

(38) #(g(t)= f(;?ﬂ y e =8O f(agw)), wduds

- H) n—2
*'ff (.%_(f g}':’%ﬂ) dvf(x(g(u)), u)du

T 2(T)

=[ Ry(g)f (x(g(w)), w)du.
T

Since ¥(#)>>0, we have

(39) x(g(t))>=c>0, where ¢ is a constant.
By the assumptions (i) and (39), we have that

fe(g(8), )=a(g()) " 5(g () ™' ~* Fx(g(®)), D=2(eN™* ¢ 7% £Go, ),

So that we have

; .
(40) x(gN T < (e Ry(a(s)aCg (M) fle )dst I
'

By integration of (40) multiplied by l'i’z(g(f)):'c(g(z‘))H"3 f(c, t), we obtain

ls=K"*

; s
(41) f RZ(g(S))f(C, S)d3£61+8 {6—1—7 Rz(g(u))x(g(u))l'l'af(c. %)d&'} —gl|s=!
.4 T ,

where K is a large constant.
From (40), we have a contradiction that

(42) | Rya()£ (e, $)ds<oo.
/4
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(1D lim y(i)(t);éo; for some ¢&{0, 1, ------ , n—2}.

10O
In this case, we have
| | | n—2 o

(43) r(g(t)x (g(t)=-EB &) *,f F(a(g()), )ds

and from this, we obtain

t g(s) -
(40 2(et)=[ [LEEDL—duf(x(g()), s)ds

t, g(12)

! i
=f R (g(s))f(x(g(s)), s)ds.
‘. | |
From (44) and by the same argument of Cass (1), we have

(45) . [ R, (g(8))f(c, s)ds <oo.

Case ii): ()2’ (¢)=<0.
In this case, we see that the case for # odd. By integration of (A) multiplied
by Rz(t), we have (2), from which we obtain

(45) | ] " R(g())f (e, s)ds<oo.

THEOREM 5. Suppose that g’(¢)=>0 and (1). If

(47) [ Rg()f(e s)ds=co for any >0,

then, every bounded solution of (A) is oscillatory for n ever and is oscillalory or

morotonically to zero as t—oo for n odd.

PROOF. From the proof part of Theorem 4, we see that the Case (II) does
not happen. So that, Theorem 5 is proved.

REMARKS. It is noted that our theorems contain the cases for f(y,f) being
sublinear or superlinear. For #=2, our theorems are identical to the one's of

([4], Sec. 2).

Ibaraki University
Mito, Japan
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