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1. Introduction 

ON SET-CONNECTED MAPPINGS 

By Takashi Noiri 

In [2J Jin Ho Kwak introduced a new class of mappings, called set-connected 

mappings, which contains the class of continuous mappings. He investigated 

severaI properties concerning such mappings, and among them, gave some 

sufficient conditions for such mappings to be ccntinuous. The purpose of this 
note is to show that every weakly continuous surjection is set-connected but not 

conversely, and to give a sufficient condition for set-connected mappings to be 

continuous. 

Throughout this note, X and Yalways represent topologicaI spaces and I:X• Y 

denotes a mapping (not necessariIy continuous) 1 of a topologicaI space X into a 

topologicaI space Y. Let A be a subset of a topologicaI space. The closure of A 

and the interior of A are denoted by CI(A) and Int(A) respectively. 

2. Set-connected mappings 

DEFINITION 1. A space X is said to be connected befween A and B [1, p. 142J if 

there exists no closed-open set F of X such that ACF and FnB=rþ. 

DEFINITION 2. A mapping 1: X • Y is said to be sef-connected [2J provided that: 

if X is connected between A and B, then I(X) is connected between I(A) and 

I(B) with respect to the relative topology. 

The foIIowing Iemma, due to Jin Ho Kwak [2], is very usefuI. 

LEMMA 1 (Kwak, [2]). A mapping I:X• Y Z"S set-connected zf aχd only zf lor 

any closed-open sef F oll(X), 1-1(F) is c!osed-ope !Z z"n X. 

THEOREM 1. Let I:X• Y be a maPPing and g:X• XXY the graph maJψz"ng 01 

1 dejz"ned by g(x) = (x,f(x)) lor each poz"χt xεX. 11 g Z"S set-coχηected， then 1 z"s 

sef-connected. 

PROOF. Let F be any closed-open set of the subspace I(X)CY. Then XXF is 

a closed-open set of the product space Xx/(X). Now, the product space XX/(X) 
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coincides with the subspace XXf(X)CXxY. Thus XXF is closed-open in the 

subspace xxf(X). Since g(X) is a subset of xxf(X). (XXF)ng(X) is a 

closed-open set of the subspace g(X)CXXY. Since g:X• XxY is a set-connected 

mapping, by Lemma 1, g-l((XXF)ng(X)) is a closed-open set of X. It follows 

from g-\(XXF)ng(X))=g-l(XXF) =f- 1(F) that f一 l(F) is closed-open in X. 

Therefore, again by Lemma 1, we observe that f is a set-connected mapping. 

REMARK 1. The converse to Theorem 1 is not true, as the following example 

due to K wak [2] shows. 

EXAMPLE 1. Let X be the real numbers with the usual topologyand f:X• X 
2 be a mapping defined by f(x)=x~ if x ~O and f(x) = 1 if x=O. Then f is set-

connected [2, Example 1]. The graph mapping g:X• XXY is, however, not 

set-connected. 

We shall give a sufficient condition for set-connected mappings to be continuous. 

For this purpose, we need the following definitions. 

DEFINITION 3. A space X is said to be extremally disconnected [7, p. 106] if the 

closure of every open set in X is open. 

DEFINITION 4. A space X is said to be C-compact [6] if every cover of any 

closed set in X by open sets of X has a finite subfamily whose union is dense 

in the closed set. 

THEOREM 2. Let Y be an extreηzally disconnected, C-compact and Hausdorff 

sψace. 1f a ηzappz"ng f: X • Y is set-connected, then f is contz'nuous. 

PROOF. Suppose that f is not continuous. Then there exists a closed set F of Y 

such that f一l(F) is not closed in X. Since f-l(F) is not closed in X , there 

exists a point xεCI(f-l(F))-f-1(F). Thus X is connected between x and 

f- 1(F). Since f is set-connected, f(X) is connected between f(x) and f (f -l(F)). 

By Theorem la and Theorem ld of [1, p. 143] , we obtain that Y is connected 

between f(x) and F. Now, since X is Hausdorff, for each pJint y E.F there 

exists an open neighborhood V y of y in Y such that f(x)종CI(Vy)' The family 

{VylyCF} is a cover of F by open sets of Y. Since F is closed in the C-compact 

space Y , there exist a finite number of pJints yl' y2' ••• ,y n in F such that Fζ 

CI(UV
Y1 

1 든j든n}). Put V=CI(U (Vyj ll르j르n}). Then V is a closed-open set of Y 

because Y is extremally disconnected. Moreover, we obtain that FζV and f(x) 
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종V. This contradicts that Y is connected between /Cx) and F. Therefore, / is 

contmuous. 

3. Weakly continuous mappings and set'connected mappings 

DEFINITION 5. A mapping /: X • Y is said to be weakly continuoμs [3J if for 

each point xεX and each open set V of Y containing /Cx), there exists an open 

set U of X containing x such that /CU)cCICV). 

REMARK 2. Every continuous mapping is weakly continuous, but the converse 

is not true [3J. 

LEMMA 2. CLevine, [3J) A mapÞz"ng /: X • Y is wealdy continμous zf and only 

zf /or eαck ope% set VCY, f-1(V)c= Int(f-1(CI(V)]).

LEMMA 3. CNoiri, [4]). 1/ a mα:pÞz"ng /: X • Y z's weakly contùzμoκs ， the강 

Cl(f-!(V))C二t- 1CCICV)) /or each open set Vc二Y.

THEOREM 3. 1/ a surjectz"on /:X• Y is μleakly c01Ztz"nμoμs， then f is set­

connected. 

PROOF. Let V be any closed-open set of Y. Since V is closed, We have C!CV) 

=V. Thus, by Lemma 2, we obtain /-lCV)C Int (f-1CV)). This shows that 

/-lCV) is an open set of X. Moreover, by Lemma 3, we obtain CI (f-lCV))ζ 
/-l CV ). This shows that /-l CV) is a closed set of X. Since / is surjective, 

by Lemma 1, we observe that / is a set-connected mapping. 

REMARK 3. The converse to Theorem 3 is not true, as the following example 

due to N. Levine [3J shows. 

EXAMPLE 2. Let X be the unit interval with the countable complement topology. 

Let Y be the unit intervaI with the usual topology and f: X • Y be the identity 

mapping. Then, since /CX)=Y is connected, / is a set-connected mapping [2, 
Lemma 3J. However, / is not weakly continuous. 

THEOREM 4. Let Y be an extremally disconnected space. 1/ a maPPing /: X • Y 

is set-connected, then / z's μleakly continuous. 

PROOF. Let x be any point of X and V any open set of Y containing /Cx). 

Since Y is extremaIly disconnected, CICV) is closed-open in Y. Thus CICV) n/cx) 

is closed-open in the subspace /CX). Put /-lCCICV)nfCX))=U. Then, since / is 



246 Takashi Nolri 

set-connected, it foIlows from Lemma 1 that U is cIosed-open in X. Therefore, 

U is an open neighborhood of x in X such that /(U)(二CI(V). This implies that / 

is weakly continuous. 

COROLLARY 1. Let Y be an extreηzally dz'sconnected space. A sμrjec#on /:X• Y 

z.s set-connected zf and only zf / z.s weakly contt"nuoμs. 

PROOF. This is an immediate consequence of Theorem 3 and Theorem 4. 

The author showed that if a mapping /:X• Y is weakly continuous and Y is 

Hausdorff, then the graph G(f) of / is cIosed in XXY [5, Theorem 10]. Therefore. 

the foIlowing coroIlary is an immediate consequence of Theorem 4. 

COROLLARY 2 (Kwak, [3]). 1/ /:X• Y z's a set-connected mapping and Y z.s 

extremally d z'sconnected Hausdor//, then G(f) z.s closed z.n XXY. 
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