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ON THE NUMBER OF ISOMORPHISM CLASSES OF CERTAIN 

TYPES OF ACTIONS AND BIN ARY SYSTEMS 

By ]oseph Neggers 

Introduetion 

While in [3) we counted a. o. the number KCm , n) of isomorphism classes of 

actions Y X defined on sets XxY with IXI=m and IYI=n, and the number of 

isomorphism classes of binary systems BCn) defined on sets X with I X I = n, in 

[2) we counted a variety of classes of finite posets. Some of the counting 

techniques developed there have ready applications and variations which are 

useful in a variety of other contexts. By way of illustration we shall develop 

some formulas for special classes of actions and binary systems. We begin with 

some definitions and a listing of information which we shall assume as known. 

An action of X on Y is a function f: XxY• Y. We shall usually denote 

actions by Y x and fCx ,y)=xy. The set X is considered to be the set of scalars. 

Another way to view actions is as follows. Let Y be the set of vertices of a 

polychromatic directed graph and let X be a set of colours. If xY1 = Y2' then we 

envisage this as representating an arrow of colour x as proceeding from Yl to y2 • 

In this sense actions are special types of graphs i. e. , a polychromatic directed 

graph is an action provided there is precisely one arrow of each colour xεx 

departing from each vertex YεY. More generally one gets involved with partial 

actions, where f has domain a subset of XXY and various other refinements. 

As with modules, ifAx and B x are actions on the same set, then ø : A• B is a 

homomorphism provided ØCxa) =xØCa). A homomorphism ø which is also a 
bijection is an isomorphism. 

For actions we define the folIowing operations, which correspond to rather 

natural constructions in a variety of cases. 

Sum: Y x+Vu=Ts ’ 
where T=YUV Cdisjoint union) , X= (XUU) (disjoint 

union) and xv=v, μ:y=y. If xy=y and μv= v for alI y and for all v respeGtively, 
then we shall identify x and μ. 

Ordinal sum: Y xθVu=Ts ' where T=YUV Cdisjoint union) , S=XUVUU 
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(disjoint union) , xv=ι νy=v， uy=y， vv'=v'. If xy=y and uv=v for aIl y and for 

aIl ν respectively, then we shaIl identify x and u. 
Product: Y xV u=T s' wh~reT=YXV， S=XX C!, (x , u)(y,v) = (xy， μv). 

Selective product: Y x.V u=T S'. where T=yXV , .. $=XUU (disjoint union) , 

x(y , v)= (xy , v) , μ(y ， v)=(y， uv). If xy=y and μv=ν， x and μ are identified. 

An action is sum-primitz"ν'e (S-prz"mz"tz"νe)， OS-priηzz"tz"ve， p-priηzz"tiνe， SP-ψrimz"tive 

respectively, if it cannot be written as a sum, ordinal sum, product or selective 

product respectively. 

An action Y x is fiα~.thfuι if xy=xψ for aIl yεY implies x=x'. Hence, if Y x 

and V u are faithful, then it is easily seen that their sum, ordinal sum, product 

and selective. product are also faithful. An action Y x . is unitary provided for 

some xεX，. xy=y for aIl yεY. 

For binary systems B, we define the foIlowing operations: 

LS(B1, B2)=B, B=B1UB2 (disjoint union) and bi드Bi implies b1b2=b2, bzb1 =b1; 

RS(B1, B2)=B, B=Bl UB2 (disjoint union) and 낀εBi implies b1b2=b1, b2b1 =b2 ; 

MS(B l' B2) = B, B=Bl UB2 (disjoint union) and biEBi implies b1b2= b2.' b2b1 =b2 ; 

RMS(Bl' B2)=B; B=Bl UB2 (disjoint union) and biεBi implies b1b2=b1, b2b1 =이· 

We shall caIl these operations 1eft sκm， right sμm， midd1e sum and reverse 

ηzidd1e sμηz respectively. Again, these various sums correspond to a variety of 

rather natural constructions. There are of course a host of other possibilities, 

but we shall only look at these. Again we have a notion of primitivity, with B 

LS-pri;쩌tz"νe if it is not of theform B=LS(B1, B2) , with the notions RS-prt"1nz"tive, 

MS-p앙%감ive and RMS-pγimitz"ve defined similar1y. FinaIly, a binary system is 

pη·ηzitz"ve if it is LS-, RS-, MS- and RMS-primitive simultaneously. 

If B is a binary system such that B=Bl U ... UBk , where B션rþ， B껴z드Ez ， k는2 

and 묵UBj is one of LS(Bi , 욕)， RS(B‘ , Bj)' MS(Bi , 욕;) or RMS(Bμ 옥 ), then 

B is decomposab1e. B is indeconψosab1e if it is not decomposable. 

If we take for granted the TJ.umbers K(m, n) and B(n), then in this paper we 

shalI essentialIy determine the number of isomorphism classes of the various 

types of primitive actionsand the various types of primitive binary systems. We 

shalI also determine the number of isomorphism classes of indecomposab12 binar.f 

systems. We reca l1 that T(k, 11), the number of actions Y X such that XζrY， 

I X I = k, I Y I = 11 has. also . been determined in. [3]. 
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On the number of faithfuI S-primitiveactions. 

n" 
If T(n) = L: T(k, n), then T(n) is determined and represents the totaI 

k=l 
Y 

number of actions Y x with XCY' , IYI =n and IXI 늘1. Since XCY' , the action 

Y x is faithfuI, and conversely if Y x is a faithful action, then x→I~ ， where 
Y 

fxY=찌" is an injection of X into Y' , so that in fact the condition that Y x is 

faithfuI is essentiaIIy equivalent to our taking X to be a subset of yY. Therefore 

T(1Z) represents the total number of faithful actions Y x with 1 Y 1 =n. 

Let {와 I Z"εw} denote the coIIection of finite S-primitive faithfuI. actions. Let 

p= {2:그%연1l 싼ε {Q, 1, 2, ... }} denote the coIIection of finite linear combinations of 

finite S-primitive faithfuI actions. Let f*(αi)= IYI if aj=Y X" Let f( L: 1Zi연)= 

g낀f*(쩍). Let T*(n) = 1 {αi1f용(연)=n} I, T'(n)= H 2:n싼 If( L:n싼)=쩌 1. 

Obviously T'(1Z) is identicaI to the number T(n) defined above. We’re interested in 

determining the number T선n) of S-primitive faithfuI actions Y x such that 1 y 1 =n. 

If T o(k,1Z) denotes the number of faithfuI unitary actions Y x with 1 X 1 =k, 

I Y 1 =n, then by adjoining identity maps we find that: 

(1) T(k, n)-To(k, 1I )=To(k+1 , n). 

Hence, if To(n)= 뚱To(k， n)， then: 

(2) T(%) = g T。(k， %) + gT。(k+1， %)=2T。(%) -T。(1， %) =2T。(%) -1. 
k 

AIso, we ha ve: 

(3) To(k, n) =필( -1/T(k+z., n), so that the numbers T o(n) and T o(k, n) are 

determined. 

If T하(n) and To륨(k， n) denote the number of S-primitive faithfuI unitary 

actions Y x with IYI =n (resp. IXI =k, IYI =n), then since adding 0 1' removing 

an identity map wilI not affect the S-p1'imitivc of an action, we have: 

(4) To*(k, n)+To*(k+1, n)=T용(k， n), the numbe1' of S-p1'imitive faithfuI actions 

Yx with lXl =k, !Yl =%· 

Hence, it foIIows that: 

(5) T*(n)= 뚱T용(k， n)=2T밤(n)-To*(1， n)=2T하(n)-1， as in fo야ormu 

T’(’n) and To(n). 

Summing is a commutative ope1'ation, i. e .• Y x+ V u= V u+ Y x in the sense of 
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identical actions and hence certainly if we use = to denote isomorphic actions. 

In the following we use constructions also discussed in [2J , so for other examples 

we refer the reader to that paper. 
k '- ITTTk Let w= {1, 2, ... } be the set of positive integers. Define products W" xW • W 

as follows: 

(6) (e1, "., ek) • (n1, .. ', n싱 =e1n1 + ... +eknk and (e l' "., ek) X (n1’ 
、 (e ,) 

--- % j=% ---k/ -'"1 

n.(e.). where n(e) =(11\(e:l)+ ... +(n\(e-l\ =(n+~-l 
k ’ ” 드 -\1J\. 0 ) ’ \ e)\ e-IJ- \ e 

Thus n(e) is also equal to the number of ordered partitions of n-1 into e+ 1 

non -negatlve integers. 

If f: W • W is any function whatsoever, we define 

(7) Cel' "', ek)x/n1, ... , nk)=(e1, ' .. , ek)X (f(n1) , ... .!(nk)). 

Thus, if 깐>n2> ... >nk> then (e l' …， ek)XT，륨(n1， "', nk) is the number of faithful 

unitary actions having e1+ ... +ek S-primitive faithfuI unitary components, of 

which precisely ei components have ni elements. 

That this is indeed the case can be seen as follows. Suppose that we consider 

aIl faithfuI unitary actions having e S-primitive faithful unitary components each 

for i = 1, "., k. 

We shaIl caIl a vector 장 in ß샤 cascadz'ng if 강 = (n l' "', nk) with 1Z1> 1Z2> ... > nk. 
• • k . . ~.k A biþartUion of m is a pair (ë, iì)εW~X W~ for some k such that 강 is cascading 

and such that ë.강 ==m. 

Hence, if we consider the sum over all bipartitions of m-ζ axTn쩌， then this 
e.n= 1n ‘ 

number is To(m). 
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Now let gl(X1)=X1• ë@파=gNl (X1, ---, xNl) (el) ..• gNi (Xl, ---, xNk) (ei) and gn(X1 ’ 

--, Xn)=X”- -ζ% g〉〈퍼 where E욕 indicates that we delete the bipartition 
e-N=η 

(1). (n)=n. and where p(X)(e，)=대(x)Ze-1 )=1/e!(P(x)+e-1)(P(x)+e-2)- - - (P(X) 

+1얘(X) for p(X)=P(X1' …. Xs) any polynomial in any finite number of indetermin­

ates. Then it follows that 

(8) T o*(n) =g ,,(T o(1). …. To(n)). 

as can be seen by simple substitution of the formulas for T o(i). 1드z·드n into 

gn(X l' .... xn). Indeed. if f and y are functions which are related by an equation: 

(9) f(%) =- 죠그 axA%, 
e-n= nz. 

then it is also true that: 

(10) h(n) =g,,(f(1), ... .f(n)). 

The polynomials gη(X1 • .... X,,) can be computed recursively and in [2J the first 

several ones are given. As we shall see below. this type of process has many 

variants and applications. in this paper we give only a few examples. 

In order to determine T/(k. n) we proceed in a similar fashion. If w is the 
2 ordered set {1. 2. 3 •... } then we turn w~ into an ordered set by letting a= (a l' a 2) < 

b= (b j • b2) if 0 1 +az<이 +b2 or if a1 +a2=b j +b2 and a1 <이. Thus. the number of 

elements preceding any given element is finite. If a=(a1• …• a,). 와εzu2， say a is 
__ t • 2, t 

cascading if a1> a2> ... > at늘 (1.1). For ëεμ'. aε(w~)'. let ë'a=((εe싼1)+1-β， 

ε eiai2). ai=(ail.ai2)' t*=e1+ ... +et • 

Then. by an argument very similar to that used above we establish that: 

(11) T n(k. 1Z) = ‘ε ëX 7、찌• where 
V. . ë.~=(k.n) ‘ 

(12) ëXT，용a= (e l' .... et) X (T하(all• aI2) • .... T O*(at1• at2)) 

(e ,) .. 'T' ... 1' _ _"\ (e,) 
=T남(all， al2) --- T하(atl' at2) 

As before in the sum in (11). a runs over all cascading vectors. In particular. 

(1). (k. n) = (k, 1Z) and (1) XTπ(k. 1Z) = To*(k. 1Z)(I)=T하(k， n). 

Again. if we define the polynomials g (k. η)(Xll ..... Xk,,) inductively by the scheme 

(13) g (l .I) (xll)=xll • g(서/Xll’ 팩n)=XK그.a많fn)g@a， 

where ε용 indi떠tes that we delete the bipartition (1)'(k. n)=(k, n) and where 
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(14) g@g=g(all,alg) (Xll, ---, xallal2) (el)--- g(atl,a2t) (X11, ••• , xat,at2] (et) 

1t foIlows that we can invert formula (11) to obtain 

(15) To*(k, n)=g(k,n)(TO(l , 1), "', To(k, n)) 

From (14) and (15) we have aIso determined T츄얘， n), whiIe (5) and (9) give us 

the numberT*(n). 

On the number of faithful OS-primitive actions 

The next item on the agenda is to deaI with ordinaI sums. Here, since for 

OS-primitive actions Y x and V u' Y xEÐV u = V uEÐY x if and only if Y x= V u ’ we 

have the extreme non-commutative situation as in ordinaI sums of posets. The 

soIutions foIIow the pattern estabIished above using different functions. 

Let F얀(k， n) denote the number of OS-primitive faithfuI unitary actions Y x ’ 

with IXI=k, IYI=n. LetFo*(n)= '2.그 Fo*(k， n). 

From the non-commutativity of ordinaI sums in the sense described above, we 

establish in a straightforward manner that 

(16) T。(7Z) = z; g< Fa*jF, where 
ë.N=n ’ 

(17) . (e l' ... , et)^(N1, ... , Nt)=N/' ... Nt 
ι +"'+e. 
“‘, and e --- e l' ' 'Ut 

(18) (el' "', et)^/N1, "', N t) -(el' "', et)^Cf(N1) , ... ,f(Nt)). 

Here as usuaI in (16) we sum only over bipartitions. 

To invert formula (16) we define polynomiaIs Gη (X 1' "', Xn) inductively by 

G1(X1)=X1 and 

(19) G“(Xl, ---, %) =전- ξ ë~퍼， 
e.N=n 

(20) 
e ,+"'+e 

(e l' "', et)![)(민， "', N t) =GN, (x l' .... X N ,/' ... G N, (x1, "', X N)e펴， , et t • 

Again in (19) ε* indicates that the bipartition (1). (n) =n is deleted. 1t fo Ilows 

that the polynomials G/xl' "', Xη) can be computed recursively and that 

(21) F o*(n)=G n(To(1), "', To(n)). 

1n order to compute F o*Ck, n) we take a product on w2 
defined as foIlows: 

(22) ë.a=(el' "', et).((a11' a12) , "', (at1, at2)) 

=( εei(ai1 +aiZ) + 1-atz-캔.2그etai2). 

A typicaI argument shows. that: 

(23) T o(k. n) = 一 ζ g/\Fo찌， where 
e-a=n 
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(24) ë^Fo융a=F0%(a1l， al2)ei---F0%(atl, at2)eI 

Thus if we take G(1 .1) (Xll)=Xll and 

(25) GCk. tl) (xll' "', 짧 =Xkη- g잃챈e5lã， 

e1+ …+et 
e --- e l' J ~t 

• 

(26) ëe')ã=GCa l1 .a12) (Xll"" /' … GCall.a l2 )(Xll' …)e, 
e1+ …+ef 
e1, …, et 

• 

With ζ* running over aIl bipartitions except (l).(k, n)=(k, n) we have the 
e'a 

inversion we need. Hence 

(27) Fo*(k, n)=GCk,ll)(To(l, 1), …, To(k, n)). 

If we let F￥(n) denote the number of faithfuI OS-primitive actions Y x such 

that IYI =n, then as before we observe that adding an identity map does not 

change OS-primitivity, and hence as above F*(n)=2Fo*(n)- 1. AIso, if F*(k, n) 

denotes the number of faithful OS-primitive actions Y x such that I Y I =n, I X I = 

k, then as in (4) we have a relation Fo*(k, n)+Fo*(k+1, n)=F*(k, n). Thus the 

quantities F*(n) and F*(k, n) have aIso been determined. 

On the number of faithful P-primitive actions 

For products we are back in the commutative situation. AIso, since Y xV u is 

unitaryand faithfuI if and only if Y x and V u are both unitary and faithfuI, then 

we may compute certain coefficients without first passing to unitary actions. Thus 

Iet Po*(k, n) denote the number of faithfuI unitary P-primitive actions Y x such 

that IXI =k, IYI =n. Let P하(n) denote the number of faithfuI unitary P-primi­

ti ve actions Y x such that I Y I = n. Let P츄(k， n) denote the number of faithfuI P一

primitive actions Y x such that I Y I =n and I X I =k. FinaIly Iet P삭n) denote the 

number of faithfuI P-primitive actions Y x such that IYI =1l. Obviously, Po*(n) 

=2:그Pn*(k， n) and P*(n) = 2:그환(k， n). 
k V k 

Now, we use a scalar product 

(28) (e l' "', et )' (Nl' …, N t ) =Nt ... N/', and the vedor product 
Ce,) >T Ce,) 

(29) (e1, …, et )X(N l' …, Nt)=N1 --- Nf 

A bipartition ë.N=n requires N to be a cascading vector. In a straightforwarcJ 

manner we find 

(30) T o(n) = _ξ ëXþN , 
e-N=η 

T(n)= ζ a× bN. 
a.N=R I 
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Here the summation runs over bipartitions e.N=n as usuaI. 

If we let h1 (x1) =x1 and 

(31) %(XIc--, Xn)=x”-- 훈용 ë@N. with ~그* indicating that (1). (n) =n is 
e.N=n 

excIuded. then it follows that 

(32) Po*(n)=ζ(To(l). …• T o(n)). P*(n) =hn(T( l) • .... T(n)). 

For Po*(~n) and 환(k. n) we work with bipartitions of elements in w2 and we 

use the scalar product: 

(33) ë.ã=(e j • .... e/)'((a1l' a12). …• (at l' at2)) 

= ((e1 • .... et)' (alla21 • .... atl)' (e1• …. et)' (a12• a22’ 
.... at2)) 

터 IfI a et 6 ae‘ ). 
i=l ’ il i;;l - i2 

Another argument of the standard type and we find 

(34) To(k.n)= L:; ëxh.*ã. T(k. n)= _ _ ~그 a× h% a, 
V. • ë.ã=(k. n) 1" ë.ã=(k. 서 Y 

Thus to invert we define h(1.l) (xll)=xll and 

(35) hrhø'(Xll •...• XbJ=Xbø- ε육 ë@ã (k,n) 1l” kn kn E·a=(k, n) 

with (l)-(k.n)=(k. n) deleted in L:;용 as usual. It follows that 

(36) Po*(k. n) =h(k.n)(T 0(1. 1) ..... T o(k. n)) 

P*(k. n) =k(k’ n) (T(l. 1) •...• T(k. n)). 

On the nurnber of faithful SP-prirnitive aetions 

For selective products we are again dealing with a commutative situation. 

Because of the definition we work with unitary actions and numbers S얀(k. n) and 

So*(n). where the first number is the number of faithful unitary SP-primitive 

actions Y x with IYI =n and IXI =k. and where the second number is the number 

Qf faithful unitary SP-primitive actions Y X with IYI=n. 

If we define ë. 힘 as in (28) and ëx 파 as in (29). then 

(37) To(n)=_ ζ ëxs“
IF 

e.N=n -U 

So*(n) =kn(TO(l) • ...• T o(n)). 

Hence. Po*(n)=SI얀(n). which from the definitions seems reasonable enough. 

For So*(k. n) we define the scalar product 
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(38) ë.ã=(el' "', et).((all, a12), "', (atl, at2)) 

(39) 

=((:Eeiai1 )+l-캄’ zLI1al2 ‘), and 

T(k, n)= _:E ëxnã. 
ë.a= (k, n) U 

For formula (38) compare the definition with formula (33) and the definition 

preceding formula (11). 

Now, letting f(l , l)(xll)=xll and 

(40) f(k ,llixll' …, xkn)=xkn- Z그* ë@δ， 
a=(k, n) 

then 

(41) SO*(k, n) = f(k끼)(T(1， l)， …, T(k. η)). 

From the definition of SP-primitivity it fo l1ows that S*(k, n) =SO*(k, n) 

+So*(k+ 1, n) determines the number of faithful SP-primitive actions Y x such that 

IYI =n, IXI =k. Hence, S*(n)= ε S율(k， n)=2S0*(n)-SO륨(1， n) is the number of 
k 

faithful SP-primitive actions Y x such that IYI =n. Now SO*(l, n)=l if n is a 

prime or 1, SO*(1, n) =0 otherwise. Thus n is a composite number if and only if 

S*(n) is even. A rather inefficient test, to be sure. 

Dropping the faithfulness requirernents 

If Y x is any action whatsoever, then X determines a set X*Cy
Y by mapping 

x• fx : Y• Y , where !,r;Y=XY. Now, if we have a sum Y x+ V u=T앙 then for S* 

we have a decomposition S*=X*UU률 with the proper extension of the definition 

of the mappings in X육 and U*. In other words, if Y x+ Y u =T S ’ then Y x*+V u‘ 

=T s. , and hence Y x is S-primitive if and only if Y x융 is S-primitive. 

If p/m) denotes the number of ordered partitions of m into k parts and if IX! 

=m, IX*I =k, then there are Pk(m) ways that X may generate X츄. 

Here 따(m)=(짧각 /. 
m 

Thus if we let K*(m, n) =:E pb(m)T*(k, n), then K앤m， n) denotes the number 
k=l- ~ 

of S-primitive actions Y x such that IYI =n and IXI =m. 

If we want to preserve the requirement that the action Y x be unitary, then 
m 

since Y x ‘ is also unitary, we merely take the sum KO휴(m， n)= 뀔þ/m)To*(k， n) 
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to obtain the number of unitary S-primitive actions Y x such that I Y I =η and 

IX I =m. 

If we consider an ordinal sum Y x+ V U = T S ’ then S*=X*UV*UU'응 in the 

appropriate way and where 1，ν =1，ν， implies f vY =v=fv'Y=v' and v=v'. Thus there 

is a natural correspondence between Y x* + V U* and T s‘ ’ so that again Y x is 

OS-primitive if and only if Y x용 is OS-primitive. Hence, we find that L*(m, n) 
m 

=1:그 Pim)F용(k， n) denotes the number of OS-primitive actions Y x such that 
k=l 

IYI =n and IXI =m. If we want to restrict ourselves to unitary actions only, 

then since we have already seen that Y x is unitary if and only if Y x싸 is unitary, 

’‘ m it suffices to take Lo (m, n)= ε 윌(m)Fo*(k， n) to obtain the number of unitary 
k=l 

OS-primitive actions Y x such that IYI =n and IXI =m. 

For products Y xV u=T S' we have S용=X*XU츄 in a natural way, i. e. , T s‘ 
=Y x*V U*' whence Y x is P-primitive if and only if Y x ‘ is P-primitive and we 

ηz 

have corresponding formulas M*(m, n) = ε Pb(ηz)F*(k， n) and M까Cm， n)= E 
k=l “ V k=l 

PkCm)PÜ싹Ck， n) to denote the number of F-primitive actions Y x such that IYI =m 

and IXI =n and the number of unitary actions Y x of the same type respectively. 

In the case of selective products Y x' V u=Ts we again obtain an obvious 

isomorphism between T S* and Y x융 • V U*' so that by the same arguments as before 
?κ m 

N*Cm, n) = E PbCm)S*Ck, n) and Nn*Cm, n) = ε pb(m)Sn육 (k, n) denote the number 
k=1 ” . ‘ k=l … ν 

of SP-primitive actions Y x such that IYI =m and IXI =n and the number of 

unitàry actions Y x of the same type which are aIso unitary. 

Fixed points 

If 0 1 denotes the action 1.0=0, then if Y x is an action with an element 0 such 

that xO=O for alI xεX and such that y~O implies xy~α then we may write 

Y x=Y x*+Ol' where Y*=Y - {이. 

Let TOOCk, n) denote the number of faithfuI 

element of the type α IYI =n, IXI =k. 

unitary actions Y x without an 

If T OiCk, n) dêfiotes the number of faithfuI 

unitary actions with precisely z' elements of the type α I Y I = n, I X I = k, then i t 

folIows that T OOCk, n) =TαöCk， n+ z'). HeÌlce it fülIows that 

(42) ToCk, n)=TOOCk, n)+TOOCk, n-l)+'" 
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From this we compute Too(k. n)=To(k. n)-To(k. n-1) immediate1y. 

Binary systems 

Having comp1eted our program for actions, we shall now concern ourse1ves \vith 

binary systems and the sum operations defined for these. We begin with some 

observations. 

1. If B=MS(B1• B2). then B=RMS(B2• B 1). 

2. If B=LS(B1, B2) = RS(B r*. B2*), 1et aεB1nBr*. bEB2nB2*. Then ab=b=a. 

a contradiction since B1nB2=ø. Hence B2nB감=ø without 10ss of genera1ity, 

i.e. , B2%ζBl' B2ζBt. Now 1et aεBz*， bεB2• then ab=b=a, i. e. , B2*= B2 
and B2nB1 ~ø， a contradiction. Hence if B= LS(B l' B2) then B is RS-primitive. 

3. If B=RS(B1, B2) then B is LS-primitive. 

4. If B=LS(Bl' B2) = MS(Bt. Bz*). then 1et aεB1nB1*， bεB2nBz*. We have 

ba=b=a. a contradiction since B 1nB2=ø. Hence, B2nB2*=ø without 10ss of 

genera1ity. i. e. , Bz*CBl' B2CBt. If aεB강• bεB2， then ba=b=a, i. e.. Bz* 
=B2• and B2nB1=ø. a contradiction. Hence if B=LS(B l' Bz), then B is MS 

primitive. 

5. If B=MS(B1• B2) then B is LS-primitive. 

6. If B=RS(B1• B2) then B is MS-primitive and if B=lvlS(B1, B2). then B is 

RS-primitive. 

7. The operations are associative. Thus. given B l' B2• B3 we claim equa1ity in 

the following situations. 
(a) LS(B1, LS(B2, B3)) = LS(LS(Bl' B2), B3), 
(b) RS(B1• RS(Bz. B3))=RS(RS(B~， Bι)， B3), 
(c) MS(B1• MS(Bz. B3)) = MS(MS(B1, B2) , B3). 

Obvious1y we have equality of the underlying sets .. Now. se1ect biEBi , i= 1.2, 3 

and compute six mu1tip1ication matrices (bi얀). 1드t， j드3 corresponding to the six 

situations. comparing them pairwise .. Thus e. g.. the matrix: 

” r bî b2 bsl 
‘ ι 

(43) b; b3 
2 

」 b3 b 3 b 3」

corresponds to both sides of (c). Thus it fo l1ows that. thebinarysystems on 
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both sides of (c) are equal. 

8. From the associativity of the operations it follows that we have essentially 
unique decompositions B=LS(B1 • .... B싱 with Bi LS一primitive in the case that B 

is a finite set. and similarly for the other operations. Thus. if B=LS(Bl' ...• 

Bk)=LS(Cl' ...• C) are two decompositions of B into LS-primitive subsystems. 

then AZj=Bin낀 is either empty or a subsystem. Furthermore. since B1 = LS(All’ 
A 12 • •..• A ll). where we delete empty sets wherever necessary. it follows that 

since Bl is LS-primitive. Bl=Ai(l) and B1CCi(1) for some z"(I). SimilarIy. 

Ci(l)CBj(i(l)) and by the disjointness of the Bi' Bl =Ci(l)' so that without Ioss 

of generality we may aIso take B1=Cl' B2=C2• etcetera. It follows that k=l 

as well. 

9. If we consider a finite B. Iet LS.B denote the elements {Bl' ...• B싱 occurring 

in a decomposition B=LS(B1 •...• Bk). repeated if necessary and Iet RS.B. MS.B 

be defined in a similar fashion. If for a set {B1 • ...• Bk} we Iet LS. {B1• …• Bk} 

= {LS. B l' LS. B2 • •••• LS. B k} (i. e. • the union counting repetitions separately) 

with RS. {Bl' ...• B,) and MS. {B1 • ...• Bk} similarly defined. then starting with 

finite B we obtain a sequence 

(44) B• LS.B• RS.(LS.B)• MS. (RS. (LS.B))• ... 

which must eventually terminate in a set {B1 • ...• B와 of elements Bi which are 

primitive. . i. e.. LS-primitive. RS-primitive and MS-primitive (and thus aIso 

RMS-primitive as in the introduction. by use of comment 1). 

10. From the relations between different kinds of primitivity as described in 

comments 2.3.4.5 and 6. and the idempotence of the mappings. LS. (LS. B) 

=LS.B. etcetera. it follows that the primitive parts of B are aIso uniquely 

determined. since in fact the sequence (44) starts for a unique one of the three 

mappings. i. e.. the order of the mappings is essen tially immateriaI. 

11. LS(Bl' B2)=LS(B2• B1) and RS(Bl' B2)=RS(B2• B1) and MS(Bl' B2)=MS 

(B2• B1) if and only if B1 = B2 for MS-primitive binary systems B1 and B2• 

Having noted these facts we are in a position to commence the counting process. 

Various .. numbers 

If BL(n) denotes the number of LS-primitive binary systems B with IBI =n 

then from comment 11 it follows that 
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(45) B(%)=-ζ ëX BL N , and B L(n)=gn(B(l) , "', B(N)) , 
e-N=n 

where the polynomials gn(x1, "', Xn) are those defined as in formula (8). 

If BR(n) denotes the number of RS-primitive binary systems B with IBI =n, 
then from comment 11 it follows that BR(n)=BL(쩌. 

If BM(n) denotes the number of MS-primitive binary systems B with IBI =n, 
the anticommutative situation applies and 

(46) B(%)=-ξ ë^B，퍼 and BM(n) = Gn(B(1), …, B(n)) 
e.N=π 

where the polynomials Gixl' "', Xn) are those defined in formulas (19) and (20). 

These being the basic quantities required, we shall next consider various other 

cases. 

Suppose B L.R (n) denotes the number of binary systems B with IBI =n which 

are both LS-primitive and RS-primitive. Then, from comments 2 and 3, it folIows 

readily that 

(47) B(n) =BL(n) +BR(n)-BL,R(n), or B L,R(n)=2BL(n)-B(n). 

Similarly, it follows that 

(48) B(n)=BL(n)+BM(n)-BL,M(n) , or BL,M(n)=BL(n)+BM(n)-B(n). 

where BL,M(n) is the number of binary systems B with IBI =n which are both 

LS-primitive and MS-primitive. 

FinalIy, if BpCn) is the number of primitive binary systems B with IBI =n, 

then we have equations 

(49) B(n)=2BL(n)+BM(n)-2BL,M(n)-BL,R (n)+BpCn) , and 

(5이 BpCn)=2BL(n)+BM(n)-2B(n). 

If we set B1-B2 if Bl and B 2 have the same primitive parts, and if C(n) 

=: ζ ëXB퍼， then C(n) is the number of equivalence class않 [B11. where 
e-N=n -, 

IB11=n and [B1] = {B2 I B1-B2}. AIso, BpCn)=gn(C(l), ... , C(n)). 

Another type of decomposition 

Suppose B is a binary system such that B=B1U".UBk, where 욕BtIBi， Bi#￠， 

and where BiUBj is one of LS(Bi , Bj)' RS(Bi , Bj)' MS(Bi , 욕) or RMS(Bi , Bj)' 

Then {Bl' …, Bk} is a decomposition of B. AIso, B is indecomposable if the only 

decomposition of B is {B}. Notice that if B is indecomposable, then it is primitive 
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since B=LS(B1• B 2) implies {Bl' B 2} is a decomposition. Suppose {B1 • ...• Bk} and 

{Cj• ….C/} are decompositions of B. Let Aij=BinCj’ 
then if Aij7얘. We certainly 

have AtjAZ1c=ι4ii" Suppose we consider Aψ， and Ars' with U. j):;i:. (r. s). Then. z'동7 

without loss of generality. and BiUBr=LS(Bi • Br) without loss of generality. It 

follows that then also LS(Aij• A rs)' so that if A = {Aij I Aψ，:;i:. rþl. then A= {B1 • ...• B상 

n {C1 • .... Cz} is also a decomposition of B. 1n particular. if B is finite. then 

the intersection of all decompositions of B yields a unique finest decomposition 

{Bl' .... Bk} whose elements are themselves indecomposable. Our next object is to 

say something about the number B/(n) of indecomposable binary systems B such 

that IBI =n. 

We shall begin by counting those binary systems B with the property that 

IBI =k and {B l' .... Bk} is a decomposition with B i = {bi} the singleton system 

낀낀=bi. These systems are quite obviously characterized by the rule bibjε {bi• 익，}. 

1n terms of a colouration associated with B. we consider the set (kXk)o= {U. j) I 
i :;i:. j}. and we colour theelements U.j) byOor 1 according to the rules XU.j)=l 

if bz얀=얀 and XU.j)=O if b.써 =bi• Conversely. any colouration immediately 

determines a binary system of the type. We operate with S k on (kXk)o by 

?;U. j)= (rþCO. rþ(j)) for rþεSk' Then it follows that if rþ is of type 11', ... sμl， then 

?; is of type 1IJ
' ... t' where t=max{i.jll드z'. j드s} and νd=μd(2)-μd’ with μd(2) 

= :L; U. j)μμ:;' and μ셔 =0 if d>s. 1t follows that the cycle index is 
i , j=d - J ‘ 

(51) :L; (μj! 2마… sμ， μs!) -1 Xlνl ---상， 
k=μ.t2μ2+"'+ Sμ， ‘ 

and the number in question is 

(52) L..: (μ1! 2μ2 ... sμ·μ)) -1 21J,+… +Ut. 
k=μ.+2μ，+ ... +sμl ‘ ‘ 

Of course if we let this number be Dk' then the number of binary systems B 

with finest decomposition {B1• ….Bk} and Bl=B2=Bk' where IBI=n isgiven by: 

(53) εD bB,(n/k). 
k!η “ 

1n order to handle the general situatbn, suppose that Dë=D(e .. "', e,) is the number 

of binary systems with the decomposition {B1 .... B l' .... Bt. …. Bt} (칸 copies of Bi ’ 

Bj' "-. Bt distinct). We let the group Se, X ... XSe, act on ((e1 + ... +et) X (e1 + … +et))o 

via (와…， 아)(j)=rþp-(e1 + … +ei_ 1 ))+(e1 + … +ei- 1) if e1+ ... +ei_1<j드ej + ... 
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+ej, and if ø= (까， ---，와)， ifJ(i, j) = (Ø(O , ØU))- If øi has the type 1μ“ ... sμ“， μ2j츠 

0, it fo lIowsthat ø=(øl'---' Øt) has 때pe fl·--s μ， where 씬=L김 μη and ø has the 

type described above formula (51). 

The number of elements of Se, X … XSe, conjugate to ø is 

(54) 친I [(μi1! 2μ12 •• • Sμt μis!) -1ez!]=α(μ ij) 

If we I1UI빼er the parts B1' …,Bt cOl1tinuo뼈Y B1' …, B e, + ---e, and if we set 

X (i, j) =1 if bibj=bi, X (i, j)=O if bi낀=깐 for brεBr' then we have a colouration, 
and conversely every colouration determines a binary system. Now, isomorphisms 

move the parts of the decomposition around according to mappings ~， and thus if 

P(Se, X ... XSe) denotes the cycle index, it folIows that Dë=P(Se, X …XSe,;2, --', 2). 

Note that the cycle index is given by 

(55) ~ α(μ:J/e，! ••• κ! X1Ui---κνt 
e，=1μ，，+… +sμ''" 1::;;: i ::;;: t υ 4 “ ‘ 

where νd = μd(2)-μd as described above. For example if e1= ..• =et=1, then 

Dg=2t2-t. 

Suppose that ë= (e1, …, e1, …, et, "', et) where e1> …>et and there are Si copies 

of ei• Let 퍼=(N11， ••• , NSl1, ---Ns씨 where Nli르N2i늘…르Nsi’ z" =1, --', t. vVrite 

B/핍)=(B/N1i) ， …, Br(Nstt)) and M*z-=k if the number M appears k times in the 

vector B/퍼)i= (B rCN li)' --', B/Nsi)). Furthermore take 

• ‘ 
B/M) 

(56) M*B, (N) = I -
\Md， M쩌， …, M.륨t， B 1(M)-필M서 

-• a • 
Finally, set [B ,(.N")] = n α*B1 (N) where α is sufficiently large (since then , . 111=1 ‘ 

α용BI(R) = 1). 

Then, we claim that: 

(57) B(%)=-ζ [BrCN)]Dë• 
강 'N=n 

Since Drn=l, it folIows that \..10 .LJ (1) 

(58) Br(n)=B(n)- ζ [BrCN)Dë' 
- ë.N=11 -

-

which can be computed recursively. It only remains to verify formula (57). What 

we do is the following. Given any binary system B with I B I = 1Z i t has a cover 

{Bl' 
••• ,B l' …, Bt, …, Bt} where there are ei copies of Bi' We may sort these 
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according to number (e1는e2는…는et) and within a fixed number of copies 칸 of 

which there are severaI we order according to size (Nμ는N2i르…르Ns/) ， i. e. , we 

are working with the usuaI cascading vectors. In effect, if we apply this system 

we have used up aII avaiIable freedom and the method now f9IIows the usual 

rules. Thus e.파= n, since we are taking the union of subsets. AIso, in each slot 

we have a certain number of possible choices, viz. , B/Nij ) in the slot correspon­

ding to Nij' Next, if we have M*i components in the decomposition which occur 

with the same frequency and which have the same number of elements, then we 

have (M굉)! equivalent arrangements. Thus, since the total number of times we 

have to select different components with M elements is εl M앙， the total con -

tribution to the possibiIities for the type of arrangement we have described consists 

of the product of the two coefficients 

(59) 
B1(M) \ /￡ M% 
I I I i=1 

"2::, M*z' 
i=1 M융1， …, M*t 

=M*B1(N). 

lndeed, the first coefficient counts the number of selections, whiIe the second 

coefficient counts the number of arrangements. FinaIly, since binary systems 

with different numbers of elements are sowieso not isomorphic, it foIIows that 

with the vectors e and N fixed, that the total count of possibiIities is simply the 

product. Thus B/(N) counts the number of distinct decompositions, which then 

needs to be multipIied by Dè to give the number of ways they can be put 

together. Summing over aII proper bipartitions yields formula (57) and we’ re done. 
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