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Introduection

While in [3] we counted a.o. the number K(m,n) of isomorphism classes of
actions Y, defined on sets .X XY with |X|=m and |Y |=#», and the number of

isomorphism classes of binary systems B(z) defined on sets X with | X|=#, in
[2] we counted a variety of classes of finite posets. Some of the counting
techniques developed there have ready applications and variations which are
useful in a variety of other contexts. By way of illustration we shall develop
some formulas for special classes of actions and binary systems. We begin with
some definitions and a listing of information which we shall assume as known.
An action of X on Y is a function f: XXY->Y. We shall usually denote

actions by Y, and f(x,y)=xy. The set X is considered to be the set of scalars.

Another way to view actions is as follows. Let ¥ be the set of wvertices of a
polychromatic directed graph and let X be a set of colours. If zy,=y,, then we

envisage this as representating an arrow of colour x as proceeding from y, to y,.

In this sense actions are special types of graphs i.e., a polychromatic directed
graph is an action provided there is precisely one arrow of each colour x&X
departing from each vertex y&¥. More generally one gets involved with partial
actions, where f has domain a subset of X XY and various other refinements.
As with modules, if Ay and B, are actions on the same set, then ¢ : A—»B is a

homomorphism provided o(xe)=2x20(ez). A homomorphism ¢ which is also a
bijection is an isomorphism.

For actions we define the following operations, which correspond to rather
natural constructions in a variety of cases.

Sum: Yy+V,=T,, where T=YUV (disjoint unioﬁ), X=(XUU) (disjoint

union) and xv=v, uy=y. If xy=y and u#v=v for all y and for all » respectively,
then we shall identify x and «.

Ordinal sum: Y y®V,=T,, where T=YUV (disjoint union), S=XUVUU
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(disjoint union), xv=v,vy=v,uy=y,vv"'=v". If xy=y and wv=v» for all y and for
all v respectively, then we shall identify x and «.

Product: Y ,V,=Ts, where T=Y XV, S=XXU, (x,4)(y,v)=(xy, uv).

Selective product: Y X__-,VU';TS,, where T=Y XV, .,_S =XUU (disjoint union),
x(y,0)=(xy,v), u(y,v)=(9, uv). If xy=y and wv=v,x and # are identified.

An action 1S sum-primitive (S-ﬁrz’mz’tz’ve), OS-primitive, P-primitive, SP-primitive
respectively, if it cannot be written as a sum, ordinal sum, product or selective
product respectively.

An action Y is faithful if xy=x"y for all y&Y implies x=x". Hence, if ¥
and V', are faithful, then. it is easily seen that their sum, ordinal sum, product
and selective product are also faithful. An action Y, is unitary provided for
some x=X, xy=y for all y&¥.

For binary systems B, we define the following operations:

LS(B,, B,)=B, B=B,UB, (disjoint union) and b,&B, implies b,b,=b,, b,b,=b,;

RS(B|, B,)=B, B=B,UB, (disjoint union) and b,&B, implies 6;6,=0b;, b,b,=b,;

MS(B,, B,)=B, B=B,lUB, (disjoint union) and b5, implies b,b,=b,, b,b;=b;;

RMS(B,, B,)=B, B=B;UB, (disjeint union) and 6,&B; implies 0,0,=0b/, b0, =0;.

We shall call these operations left sum, #ight sum, wmiddle sum and reverse
middle sum respectively. Again, these various sums correspond to a varilety of
rather natural constructions. There are of course a host of other possibilities,
but we shall only look at these. Again we have a notion of primitivity, with B
LS-primitive if it is not of the form B=LS(B,, B,), with the notions RS-prim:itive,
MS-primiiive and RMS-primitive defined similarly. Finally, a binary system is
primitive 1t it is LS-, RS-, MS- and RMS-primitive simultaneously.

If Bis a binary system such that B=8,U...UB,, where B¢, B.B<B,, k=2,
and B;UB; is one of LS(B;, B), RS(B,, B), MS(B,, B;) or RMS(B,, B)), then
B is decomposable. B is indecomposable if it is not decomposable.

It we take for granted the numbers K(m, #) and B(#), then in this paper we
shall essentially determine the number of isomorphism classes of the various
types of primitive actions and the various types of primitive binary systems. We
snall also determine the number of isomorphism classes of indecomposablz binary

systems. We recall that T(& #), the number of actions ¥ , such that X CYY,
X | =k |Y]|=n has.also-been‘ determined in- [3]. |
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On the number of faithful S-primitive actions. -
If T(n)= kZ_JI T(kn), then T(m) is determined and representS the total
nunibér of actions Y, with XCYY, IY|'=In and | X |>1. Since X‘CYY, the action

Yy 1s faithful, and conversely if Y, is a faithful action, then x—f_, where
f.y=xy, is an injection of X into Y*, so that in fact the condition that Y IS
faithful is essentially equivalent to our taking X to be a subset of Y". Therefore
T'(n) represents the total number of faithful actions ¥, with [¥|=z. .
Let {a,/i€w} denote the collection of finite S-primitive faithful -actions. Let
P={2na|nc{0,1,2,...}} denote the collection of finite linear combinations of
finite S-primitive faithful actions. Let fFla)=1Y| if a;=Y .. Let f(Zona,)=
Snf*(a).  Let T*)=|{a|f*a)=n}l, T'm)=|{ZTne|f(nu)=n}.
Obviously 77 (#) is identical to the number T'(#) defined above. We're interested in
determining the number T*(#) of S-primitive faithful actions Y, such that |¥| =x.

It T,(k »n) denotes the number of faithful unitary actions Y, with [X|=4,
Y | =#n, then by adjoining identity maps we find that: -

(1) T n)—Ty(kn)=T,(k+1,n).
Hence, if To(n)z%‘.TO(k, 7), then:

@ Tm=3 Tolk, n)+ D ToCk+1, n)=2T () =T (1, m)=2T () 1.

Also, we have:
(3) To(fa, n)=% (—DiT(k-I—z', #), SO0 that the numbers To(n) and To(lz, 1) are
. i =

determined.

It 7,*(z) and T *(k #n) denote the number of S-primitive faithful unitary
actions ¥, with Y |=n (resp. |X|=&, |Y|=n), then since adding Or removing
an identity map will not affect the S-primitivc of an action, we have:

(4) Ty*(k,n)+Ty*(k+1, n)=T%(k, n), the number of S-primitive faithful actions
Y with | X|=4 |Y]|=n
Hence, it follows that:

(5) T*(n)z%T*(k, n)=2T0*(n)¥T0*(1, n)=2T,*(n)—1, as in formula (2) for

T'(n) and T (n).

Summing is a commutative operation, i.e., Y ,+V,=V,+Y , in the sense of
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identical actions and hence certainly if we use = to denote isomorphic actions.
In the following we use constructions also discussed in [2], so for other examples

we refer the reader to that paper.
Let W={1,2,...} be the set of positive integers. Define products Wk <X W -w

as follows:

(6) (ep -+, ) + (my, s, m)=eymy +- ety and (e, )X (ny, -, m) =, -

1, whers n® =(2)(e b (YD) =),

Thus # is also equal to the number of ordered partitions of z—1 into e+1

non-negative integers.
If f:W->W is any function whatsoever, we define

(7) ey, =+ €)X [(ny, -+, m)=(ey, *+, €)X (f(n), -+, F(1,))- |

Thus, if #,>n,>-->n, then (e, -, ek)xra*(”l* -+, #,,) 18 the number of faithful
unitary actions having e,+---+e, S-primitive faithful unitary components, of
which precisely e, components have #; elements.

That this is indeed the case can be seen as follows. Suppose that we consider

all faithful unitary actions having e S-primitive faithful unitary components each

containing # elements. Then, if we assume that there are Z-non-isomorphic types
present, then these can be distributed in pk(e)=(z:i> ways, where p,(e) 1s the
numbker of ordered partitions of ¢ into %2 positive Integers, each such partition
corresponding to a distinct distribution of these 2 types. Now, if T *(z)=m, then

these £ types can be selected in (g'z) ways, disregarding order. Hence the total

number of actions which can be constructed from % types is (’g) (2:%) Summing

over k£, we find that we end up with m'® possibilities. The more general case
follows at once, since actions having different cardinalities cannot be isomorphic,
l.e., the product rule holds in that situation when considering the decomposition
of the faithful unitary action into its e; components each containing #; elements
for 7=1, -+, A.

We shall call a vector % in W* cascading if n=(n, ", n,) with #>n,>>n,
A bipartition of m is a pair (e, ?z')Eka W* for some % such that 7 is cascading

and such that e-z=m.
Hence, if we consider the sum over all bipartitions of m_ 37 ex,..7, then this
P ¢

*n—=1m

number is T (m).
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NOW let gl(Xl):'Xl’ E@ﬁ:gNl (x]_’ seo le) (el)_,_gN* (xl’ oo, xN*) (31) and gH(:{l,
o, X )=X, — 2°%eXN where 3°% indicates that we delete the bipartition

esN=n
(1)-(#)=#n, and where p(x)("‘)=(lf’(x) e 1):1/e!(p(x) e~ 1D(p(x)+Le—2). .. (px)

+1)p(x) for p(x)=p(x,, -, ) any polynomial in any finite number of indetermin-

ates. Then it follows that
(8 T*(n)=g (To(1), -+ To(m)),
as can be seen by simple substitution of the formulas for To(z’), 1<<;<z into

g, (% xn)f. Indeed, if f and y are functions which are related by an equation:

(9) fm)=_ 22 exn,

een==1m

then it is also true that:

(10) h(n)=g, (f(1), -, f(n)).

The polynomials g, (% 0 x,) can be computed recursively and in [2] the first
several ones are given. As we shall see below, this type of process has many
variants and applications, in this paper we give only a few examples.

In order to determine 7T *(% n) we proceed in a similar fashion. If w is the

ordered set {1, 2, 3, ---} then we turn w" into an ordered set by letting a=(a, a,) <

b=(b, b,) if a;,+a,<b;+b, or if a,+a,=b,-+b, and a,<b,. Thus, the number of
elements preceding any given element is finite. If a=(ay, -, a,), az-sz, say a 1is
cascading if a1>a2>--->af2t1, 1). For =" &'E(wz)t, let E-5=((Zeiaﬂ) -1 — ¥,
2ea,), a.=(ay, a,), t*=e;+--+e,.

Then, by an argument very similar to that used above we establish that:

H

(11> Tk n)=_2_ EXTﬂ*a, where

e-3 =k 1)
(12) EXTu*z'i:(el, oo, @) X (T ¥ (@, a19), -+, T*(a,y, @)
=T*(a), ;) @... Ty*(ay, ay) (e
As before in the sum in (11), ¢ runs over all cascading vectors. In particular,
(D« (b, W)=k, n) and (D)X (b )=T ¢k, 0) " =T j*(k, n).
Again, if we define the polynomials gk, n) (%15 ---,xkn) inductively by the scheme
(13) £1,1) X1 )=%10 &ep ) (Fyp 0 Xpp) =%y, — 227 e®a,

e~a=(k,n)

where >_°%* indicates that we delete the bipartition (1):(%k, #)=(k, ») and where
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(&) y (@,

(14) E®5=§(amm)-(@'11r " xa“am) g (a,, az) €T Xat, at,
It follows that we can invert formula (11) to obtain

(18) Tk, m) =g (T, 1), -+, To(k, 1))
From (14) and (15) we have also determmed T*(k, n) whlle (5) and (9) give us
the number T*(#).

On the number of faithful OS-primitive actions

The next item on the agenda is to deal with ordinal sums. Here, since for
OS-primitive actions Y, and V, Y, @V, =V,®Y 5 if and only if ¥ =V, we
have the extreme non-commutative situation as in ordinal sums of posets. The
solutions follow the pattern established above using different functions.

Let F O*(ie, n) denote the number of OS-primitive faithful unitary actions ¥ s
with [X =k, |[Y|[=n. Let Fy*(n)=2_F*(k, n).

From the non-commutativity of ordinal sums in the sense described above, we
establish In a straightforward manner that

(16) Ty(w)= 22 e/\F N, where
e N=n

- e, + e
(17) (31' '"’ez‘)/\(N e ’Nf):NIEl---Nt€f< 1

)
, and
gl’ <ee et

(18} (eli "ty ef)/\f(N s 7% Nf) 2_(31: e, € )/\(f(Nl)r '”!f(Nt))'
Here as usual in (16) we sum only over bipartitions.

To invert formula (16) we define polynomials G, (x4, -, %) inductively by
G,(x,)==x, and | | |

(19) G (%, -, x,)=x — 33 eDN,

el

e N=n
| - s e T te
(20) Cey, -+, €)OWNy, -+ N)=Cy (x5 3Gy, Gy 3G 0 )
b y f
Again in (19) >_* indicates that the bipartition (1)-(#)=# is deleted. It follows

that the polynomials G,(x,, -+, x,) can be computed recursively and that
(21) F{)*(”):Gﬂ(To(l): "ty To(fz))-
In order to compute F *(k, #) we take a product on w” defined as follows:
(22) E'&: (elr "% ef)' ((alli 312) e ((zfll a 2)) |
:(lzgi(dil_l“ﬂiz) "I_l—fztz"“t* 2_€ 632)
A typical argument shows that-
(23) Tylkn)=_22 e/Npg, @, where

gea=1n
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I ' &2 oy e/ €17 Ty
(24 eNpa=Fy*(a,a,) " F¥a, a,) (gl, ., 8 )

Thus if we take Gy 1y (#;))=%; and
(25) G(.E:, ) (xll’ e xkn) ~ % 2" eQa,

ea=n
el—l—---—l-et)

I— € t
(26) e@a:G(ﬂupﬂm) (.’1711'”, ) h G(ﬂlh arz)(x“’ "-)e( e]_! "1 ef

With 2°% running over all bipartitions except (1):(%4 #)=(% #n) we have the
e*a

inversion we need. Hence
(27) FO*(I‘?: ﬂ) :G(k, ?1)(T0(1’ 1): "% TO(k: 72))'

If we let F*(#) denote the number of faithful OS-primitive actions ¥ 5 such
that |¥'|=#, then as before we observe that adding an identity map does not
change OS-primitivity, and hence as above F*(n):zFO*(n)—l. Also, if F*(k, )
denotes the number of faithful OS-primitive actions ¥, such that |V |=#, |X|=
k, then as in (4) we have a rel_ation Fd*(k, n)+FO*(/e+1, 7#)=F*(k,n). Thus the
quantities F*(z) and F*(%,»n) have also been determined.

On the number of faithful P-primitive actions

For products we are back in the commutative situation. Also, since Y,V is
unitary and faithful if and only if ¥, and VU are both unitary and faithful, then

we may compute certain coefficients without first passing to unitary actions. Thus
let PO*(k, 7#) denote the number of faithful unitary P-primitive actions ¥, such
that |X| =k, |Y|=n Let Py*(n#) denote the number of faithful unitary P-primi-
tive actions Y, such that |Y|=#n. Let P*(% z) denote the number of faithful P-
primitive actions Y, such that |Y|=# and |X|=k. Finally let P*(»#) denote the
number of faithful P-primitive actions ¥, such that |Y'|=#n. Obviously, Py*(»)
=§P0*(ia, #n) and P*(n)=§P*(k, 7).
Now, we use a scalar product

(28) (e, = e,)- (N, -, N:)=Nle‘ Nf', and the vector product

(29) (e, - ) XNy, -, Nt)le(B") N!(e,)'

A bipartition 6N =u requires N to be a cascading vector. In a straightforward

manner we find
(30) T,(m)= 22 eX,N, T(n)

e+ N =%
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Here the summation runs over bipartitions e- N=n as usual.
If we let 2;(x,)=x, and | | |
B k(% x)=x,~ 2% éQN, with 3% indicating that (1)-(n)=n is

EIN=n | :

excluded, then it follows that
(32) PFr(m)=h (T (1), -, Ty(n), P*(n)=h,(T(L), -, T(n)).
For P*(k, n) and P*(k, n) we work with bipartitions of elements in w and we

use the scalar product:

(33) E'E::(elr "% er). ((al]_r alZ)r "% (atll at2))
:((gli "y 33)' (311321: "% afl): (61, " 3;) ’ (512: Cooy **°, a;g))
4 e, L e
=(£E1 i1 f_[l.lai?)'
“Another argument of the standard type and we find
(B0 Tylk,m)=__25 €éX, 4, T(hn)=_ 35 eX,a,

era=(k,n) eea=_k,n)

Thus to invert we define k(lrl)(x11)=xll and

(35) k(k.n)(xlll ‘e xkﬂ):xkﬂ_a@:Z(:n)d@E'

with (1):(k, #)=(k, #) deleted in Z_* as usual. It follows that
(36) Po*(km)=hg, »(To(L 1, -+, To(k, 1))
P*(k, n) =h(k, ") (T, 1), -+, T(k, )).

On the number of faithful SP-primitive actions

For selective products we are again dealing with a commutative situation.

Because of the definition we work with unitary actions and numbers S *(%, #) and

-SO*(ﬂ), where the first number is the number of faithful unitary SP-primitive
actions ¥ , with |Y|=» and |X|=4, and where the second number is the number
of faithful unitary SP-primitive actions Y v with [Y|=n,

If we define 2N as in (28) and éXN as in (29), then

B Tym)= 3T éXg.N

eeN=n

S (m)=h,(To(1), =+, To(m)).

Hence, P *(n)=S,*(n), which from the definitions seems reasonable enough.

For S *(% n) we define the scalar product
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(38) é'a:(elr "%y 31)‘ ((311: 312): "*% (‘3:1’ 632))

4 e,
=((Zeg;)+1-#%, I1%2), and
1=

e-a=(k,n)
For formula (38) compare the definition with formula (33) and the definition

preceding formula (11).
Now, letting f(l, 1)("'11):”11 and

(40) f(k’ ”) (x]_l! AL xkﬂ) :xkﬂ —E.E___.'_Z(k*n) -é®a.l
then

(41) Sy *(k, n) =f(k, H)(T(l, 1), -+, T'(k, n)).

From the definition of SP-primitivity it follows that S¥*(Z ») =S5,%(k, 1)
+S*(k+1, n) determines the number of faithful SP-primitive actions ¥ , such that
| YI=#n |X|=k Hence, S*(n)= ‘? S*(k, n) =25,*(n)—S,*(1, n) is the number of

faithful SP-primitive actions ¥ 5 such that |[Y|=» Now SO*(l, n)y=1 if 7 IS a

prime or 1, Sy*(1,#)=0 otherwise. Thus » is a composite number if and only if
S*(n) is even. A rather inefficient test, to be sure.

Dropping the faithfulness requirements

If Y5 1s any action whatsoever, then X determines a set X*CY' by mapping
x—f . Y—Y, where f,y=xy. Now, if we have a sum YX+VU'=TS, then for S*
we have a decomposition S¥*=X*JU* with the proper extension of the definition
of the mappings in X* and U*. In other words, if ¥ ,+¥, =T, then ¥ ,,+V .
=Ts«, and hence Y, is S-primitive if and only if ¥4, is S-primitive.

_If pk(m) denotes the number of ordered partitions of #w into £ parts and if | X!
=m, |X*|=Fk, then there are P,(m) ways that X may generate X*.

Here p,(m) =<”k": i)

Thus if we let K*(m, n) =k£1 pk(m)T*(k, n), then K*(m, n)denotes the number
of S-primitive actions Y, such that [¥|=#z and |X|=m.

If we want to preserve the requirement that the action Y, be unitary, then

' m
since Y . is also unitary, we merely take the sum Ky *(m, n)= klek(m)To*(k, 7 )
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to obtain the number of unitary S-primitive actions ¥, such that [¥Y'|=# and
X = ,

If we consider an ordinal sum Y ,+V,=T., then S*=X*UV*UU* in the
appropriate way and where f, = fy, implies fy=v=f_,y=v" and v=v". Thus there

is a natural correspondence between Y ,,+V,. and T, so that again ¥ x 1S
OS-primitive if and only if Y 5, 1s OS-primitive. Hence, we find that L*(m, n)

L
— kZ]l P, (m)F*(k, n) denotes the number of OS-primitive actions Y, such that

1Y |=#» and | X|=m. If we want to restrict ourselves to unitary actions only,
then since we have already seen that Y, is unitary if and only if ¥ ,. is unitary,

% m
it suffices to take L, (, fz)=k21 p,(m)Fy*(k, n) to obtain the number of unitary

OS-primitive actions Y, such that [Y|=#z and |X|=m.
For products ¥,V ,=T, we have S*=X*XU* in a natural way, 1Le., T,
=Y y«V» Whence Y 5 is P-primitive if and only if Y ,, is P-primitive and we

m ?R

have corresponding formulas M*(m, #)= Zpk(m)P*(k n) and M *(m, n)= = 1

k(m)PO*(k 7) to denote the number of P- pr1m1t1ve actions Y, such that 1Y | =
and |X|=# and the number of unitary actions Y, of the same type respectively.

In the case of selective products Y 4-V,=T¢ we again obtain an obvious
isomorphism between T, and Y .V, so that by the same arguments as before

N*(m, n) = Z pk(m) S*(k, n) and Ny*(m, n) L‘Zl pk(m)S * (k, #) denote the number

of SP—pr1m1t1ve actions ¥ v such that [Y|=m and |X|=#» and the number of
unitary actions Y, of the same type which are also unitary.

Fixed points

If O, denotes the action 1-0=0, then if Y y 1san action with an element O such

that x0=0 for all x£X and such that y:£0 implies xy#0, then'_ we may write
Y, =Y y*+0,, where Y*=Y— {0}. |

Let Ty (% n) denote the number of falthful umtary actions Y without an

element of the type O, |Y |=n, | X|=4. If TOz(k n) denotes the numbe1 of faithful

umLary actions with precisely 7 elements of the_ type O, \Y | = l X l =k, then it
follows that T (% #)=T(k, n+i). Hence it follows that ~ |
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From this we compute T,,(k, #)=T (% #)—T ,(k, n—1) immediately.

Binary systems

Having completed our program for actions, we shall now concern ourselves with
binary systems and the sum operations defined for these. We begin with some
observations.

1. If B=MS(B,, B,), then B=RMS(B,, B,).

2. If B=LS(B,, Bz)zf?S(Bl*, B,*), let e¢&B,NB*, b&EB,NB*. Then ab=b=aq,
a contradiction since BlﬂBzzgzﬁ. Hence BzﬂBz*zqﬁ without loss of generality,
iL.e.,, B*CB,, BZCBI*. Now let e&B,*, bEBZ, then ab=b=a, Ii.e., 32*232
and B,NB;7#¢, a contradiction. Hence if B=1S(B,, B,) then B is RS-primitive.

3. If B=RS(8, B,) then B is LS-primitive.

4. If B=LS(BI, Bz)-:xMS(Bl*, Bz*), then let e B NB* b&B,NB,*. We have
be=b=a, a contradiction since B,NB,=¢. Hence, B,NB,*=¢ without loss of
generality, i.e., B*CB,, B,CB/*. If a&€B,*, b&B,, then ba=b=a, i.e., By*
=B, and B,NB;=¢, a contradiction. Hence if B=LS(B,, B,), then B is MS-
primitive.

5. If B=MS(B,, B,) then B is LS-primitive.

6. If B=RS(B,, B,) then B is MS-primitive and if B=MS(B, B,), then B is
RS-primitive.

7. The operations are associative. Thus, given B, B, B; we claim equality in
the followmg situations.
(a) LS(B,, LS(B,, B;))= LS(LS(BI, B,), By),
(b) RS(B,, RS(B,, 3))—RS(RS(B;, B.), B,),
(c) MS(B,, MS(B,, B)))=MS(MS(B,, B,), By).
Obviously we havé equality of the underlying sets. Now, select 0. €B,,7=1, 2, 3
and compute six mu_l_tiplication matrices (bz.bj), 1<z, 7<3 corresponding to the six

situations, comparing them pairwise. Thus e.g., the matrix:

b, by ]
2

(43) b, b, b

corresponds to both sides of (¢). Thus it follows that- the binary systems on
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both sides of (c) are equal.
8. From the associativity of the operations it follows that we have essentially
unique decompositions B=LS(B|, ---. B,) with B, LS-primitive in the case that B

is a finite set, and similarly for the other operations. Thus, 1if B=LS(BI,
Bk):LS(Cl, oo, C,) are two decompositions of B into LS-primitive subsystems,
then Az.j=Bz-ﬂCJ- is either empty or a subsystem. Furthermore, since B, =LS(A4,,,
Ao -, A;,), where we delete empty sets wherever necessary, it follows that
since By is LS-primitive, B;=4,,, and B/CC,,y for some 7(1). Similarly,
Cz-(l)CBj(i(D) and by the disjointness of the B, Bl=c£(1), so that without loss
of generality we may also take B;=C,, B,=C,, etcetera. It follows that A=/
as well.

9. If we consider a finite B, let LS-B denote the elements {B,, -+, B,} occurring
in a decomposition B= LS(Bl, '--,Bk), repeated if necessary and let RS-B, MS:-B
be defined in a similar fashion. If for a set {B; -, B,} we let LS- (B, -, B,
={LS-B,, LS-B,, ---,LS-B,} (i.e., the union counting repetitions separately)
with RS-{B,, --, Bk} and MS-{B;, -, B,} similarly defined, then starting with
finite B we obtain a sequence

(44) B—-LS-B-RS-(LS-B)->MS+(RS-(LS-B))—...
which must eventually terminate in a set {B, -, B,} of elements B, which are
primitive, i.e., LS-primitive, RS-primitive and MS-primitive (and thus also
RMS-primitive as in the introduction, by use of comment 1).

10. From the relations between different kinds of primitivity as described in
comments 2, 3,4,5 and 6, and the idempotence of the mappings, LS-(LS-B)
=LS-B, etcetera, it follows that the primitive parts of B are also uniquely
determined, since in fact the sequence (44) starts for a unique one of the three
mappings, i.e., the order of the mappings is essentially immaterial.

11. LS(B,, B,)=LS(B,, B;) and RS(B,, B,)=RS(B, B) and MS(B,, B)=MS
(B, By) if and only if B;=2B, for MS-primitive binary systems B, and B,.

Having noted these facts we are in a position to commence the counting process.

Yarious numbers

If B;(n) denotes the number of LS-primitive binary systems B with [B|=#
then from comment 11 it follows that
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(45) B(m)=_3 éxg N, and B (w)=g (B, B(N)),

iy

e N=n
where the polynomials g,(x;, ---,x,) are those defined as in formula (8).
If B,(n) denotes the number of RS-primitive binary systems B with |B|=z,

then from comment 11 it follows that B,(n)=B,(#n).

If B,,(n) denotes the number of MS-primitive binary systems B with |[B|=z,
the anticommutative situation applies and

(46) B(m)=_3 éAgN and B, (n)=G,(B(),, B(n))

e'N=n

where the polynomials G (x, -, x,) are those defined in formulas (19) and (20).
These being the basic quantities required, we shall next consider various other

cases.

Suppose BL’ » (n) denotes the number of binary systems B with [B|=# which
are both LS-primitive and RS-primitive. Then, from comments 2 and 3, it follows
readily that

(47) B(n)=B; (n)+By(n)—B; x(n), or B; (n)=2B;(n)—B#).
Similarly, it follows that

(48) B(n)=BL(n)+BM(n)——BL,M(n), or BL,M(n)zBL(n)—I—BM(n)—B(ﬂ).
where BL, M(n) is the number of binary systems B with |Bl=# which are both
LS-primitive and MS-primitive.

Finally, if Bp(n) is the number of primitive binary systems B with |B|==z,
then we have equations

(49) B(n)=2BL(n)+BM(n)—ZBL. M(n)-—BL’ P (n)—l—Bp(?z), and

(50) Bp(n) =2B,(n)+B,,(n)—2B(n).

If we set Bi~B, if B, and B, have the same primitive parts, and if C(»)
= >, eX Bﬁﬁ, then C(») is the number of equivalence classes [B;], where

——lpr

esN=n

B,|=n and [B;]={By|B;~Bs}. Also, B(n)=g,(C(D),,C(m).

Another type of decomposition

Suppose B is a binary system such that B=B,U---UB,, where B.B.CB, B;7¢,
and where BZ-UBJ. is one of LS(B,, Bj), RS(B;, Bj), MS(B,, Bj) or RMS(B,, Bj).
Then {B,, -, B,} is a decomposition of B. Also, B is indecomposable if the only
decomposition of B is {B}. Notice that if B is indecomposable, then it is primitive
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since 8=LS(B,, B,) implies {B,, B,} is a decomposition. Suppose {By, -, B,} and
{C, -+, C;} are decompositions of B. Let Aij:Bz.ﬂC-, then if Az-j;éqﬁ, we certainly

have /—12.5,.1112 jCA,Ej. Suppose we consider A:.:j and A, with (7, 7)7#(#,s). Then, &7

without loss of generality, and BZ.UB,,:LS(BZ., Br) without loss of generality. It
follows that then also LS(Az. i Ars), so that if A= {Az-lez-j?fé}, then A= {B,, -, Bk}
N{Cy---,C} 1s also a decomposition of B. In particular, if B is finite, then
the intersection of all decompositions of B yields a unique finest decomposition

{B,, ---, B,} whose elements are themselves indecomposable. Our next object is to
say something about the number B;(#) of indecomposable binary systems B such

that |B|==n.

We shall begin by counting those binary systems B with the property that
|B|=Fk and {B,, -, B} is a decomposition with B,={h} the singleton system
bz-bz:bi. These systems are quite obviously characterized by the rule bz.bjE {bi, bj}.
In terms of a colouration associated with B, we consider the set (2XA),= {(z,7)|

;#7}, and we colour the elements (7, 7) by O or 1 according to the rules X(7,7)=1
if bibjzbj and X(,j7)=0 if bb:=0, Conversely, any colouration immediately

determines a binary system of the type. We operate with S, on (£X£%), by

0 (7,7)=00(), ¢(7)) for (;SESk. Then it follows that if ¢ is of type 1%...s",  then

(2) 2)

@ is of type 17" where t=max{,7|1<7,/<s} and v,=p,"~ —p, with F‘d(

= 22 (G, mt;, and p,=0 if @>s. It follows that the cycle index 1s
2,7=d
Y, YV,

2 L —1
(51) > ORI ATRD BN ARED St
k=0 + 2+ + 54,

and the number in question Is
(52) > (4! 2% st p 1) g
=gty 2,+ -+ 512,
Of course if we let this number be D, then the number of binary systems B

T T

with finest decomposition {By, -, B,} and B;=B,=B,, where |B|=# is given by:
(63) kZ,D.E:B[(”/k)‘

In order to handle the general si'tﬁati:m, suppose that D'é:‘D(el,.---,e,) js the number
of binary systems with the decomposition {Bj--, By, -, B, -+, B;} (e; copies of B;,
B, -, B, distinct). We let the group S, X---XS§, act on ((ey+--+e)X(e+-+e)),
via (@, POUD=0.(F—(e;++e,_))+(e+--+e;,_) 1 e, +te;_<J<e + -
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+e;, and if ¢=(p;, -, 4, G D=(PE, ¢(). If ¢; has the type 1% e s*, 1. >
0, 1t follows that QSZCQSI, e gﬁr) has type 1...¢% where Hi= 2 Hi; and ¢ has the

type described above formula (51).

The number of elements of S, X+ XS§, conjugate to ¢ is

4
Hya Ly —1 e
(54) _1—[1 [(ﬂﬂl 2778 !-’a‘.js!) 33'” ——Cl’(ﬂ z;)

=

If we number the parts B, -, B, continuously B, ""Be1+---e, and if we set
X(, p)=11f bz.bjzbe., X(,7)=0if b,ibjzbj for b=B then we have a colouration,
and conversely every colouration determines a binary system. Now, isomorphisms
move the parts of the decomposition around according to mappings @, and thus if

P(SEIX.“XSE,) denotes the cycle index, it follows that DE=P(SEI>(---><S€=;2, oo 2),
Note that the cycle index is given by |

(55) p a(p.)/e ! el x oz,
e;=1p; 4o +spy,, 1<t 7
where vy, = ﬂd(z)-—ﬂ , as described above. For example if ¢;=--=e¢,=1, then
QP .
D.=2""",

Suppose that e=(e, -, €;, ", ¢, **,€,) Where ¢/ > >e, and there are s; copies
of ¢, Let N=(Nyy, -+, N, ~N,,) where N;>Ny>>N_, i=1, -, & Write
Bf(ﬁ):(Bf(Nﬁ): -+, B,(Ns,t)) and M*=F if the number M appears £ times 1n the
vector B[(J_\}DE:CBI(N 1;)r = B;(Ns;)). Furthermore take

B,(M)

(56) M*Bl(z_’v)=( ; )
Mx1, M%2, -+, Mxt, B,(M)— _ZIM*;.
1=

— a —
Finally, set [BI(N)] ZMI—I1 a*B,(N) where o is sufficiently large (since then

axB,(N)=1).
Then, we claim that:
(57) B(n)::__ 2, [BI(N)]DE.

e« N=n

Since D=1, it follows that
(58) B,(n)=B(n)— 3= [B,(N)D;

e*N=n
which can be computed recursively. It only remains to verify formula (67). What

we do is the following. Given any binary system B with |B|=# it has a cover
{Bl,---,Bl,---,Bt,---,Bt} where there are e; copies of B,. We may sort these
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according to number (¢,=>e,=>+-->¢,) and within a fixed number of copies e; of
which there are several we order according to size (N;=>Ngy,>-+>Ns;i), i.e., we
are working with the usual cascading vectors. In effect, if we apply this system
we have used up all available freedom and the method now iollows the usual
rules. Thus 2-N =#, since we are taking the union of subsets. Also, in each slot
we have a certain number of possible choices, viz., B, (N 3-j) in the slot correspon-
ding to N i Next, if we have M=%/ components in the decomposition which occur

with the same frequency and which have the same number of elements, then we

have (M+7)! equivalent arrangements. Thus, since the total number of times we
f

have to select different components with M elements is _Zl Mz, the total con-
7=

tribution to the possibilities for the type of arrangement we have described consists
of the product of the two coefficients

B (M) : .
(89) ( r ) (z§1 Mo )=M*BICI_S/").
5:—1‘ Mx2] \pfx, ..., Mt

Indeed, the first coefficient counts the number of selections, while the second
coefficient counts the number of arrangements. Finally, since binary systems
with different numbers of elements are sowieso not isomorphic, it follows that
with the vectors ¢ and N fixed, that the total count of possibilities is simply the
product. Thus BI(I_\f ) counts the number of distinct decompositions, which then
needs to be multiplied by D; to give the number of ways they can be put

together. Summing over all proper bipartitions yields formula (57) and we’re done.
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