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 FINITELY NEIGHBORABLE GROUPOIDS
By A.Y.W. Lau

Let Gpd be the category. of compact groupoids and continuous homomorphisms.
A subclass S is constructed by taking Cartesian products of finite groupoids,
closed subgroupoids of the products and continuous homomorphic images thereof.

It will ke shown that S is precisely the class of finitely neighborable groupoids.

Since a compact connected group like the circle group is not finitely neighborable,
S is a proper subclass of Gpd.

A groupoid S is a Hausdor{f space with a binary operation « : SXS—S. A groupoid
S is said to be finitely neighborable if for every open cover of S, there exists a

finite refinement Z such that S=UU?/ U° where 7° is the interior of U and if U,
=

Ve, then there is a We Z such that UVCW. Clearly, a finitely neighborable
groupoid 1S compact.

LEMMA 1. A finitely reighborable groupoid is a lopological groupoid (.e., the
operation is jointly continuous).

PROOE. Let x, y&S where S is a finitely neighborable groupoid, and let xy&U
where U is an open set. Then 7 = {U,S\xy} is an open cover of S. Let Z be

the refinement, and xEAO, yEBO for some A, BE€Z'. Then ABCC for some CEZ..
Hence CCU since xy<C.

In [2], the following theorem was shown for semigroups, but the proof could
be adapted to the groupoid case.

THEOREM 2. Let {S,} be a collection of fimite groupoids. Then each of the
following s finitely neighborable:

(1) @ Cartesian product of {S }

(2) a closed subgroupoid of the product

(3) @ continuous homomorphic image of a closed subgroupoid of the product.

If one takes all finite groupoids and constructs the class given by (1), (2), (3),
then the resulting class S is contained in the class of finitely neighborable
groupoids. The ensuing propositions establish that the two classes are the same.
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Before proceeding to the lemmas, a nerve .# of a groupoid S is defined to be a

finite cover of S such that (1) S=Nng0 and (2) if U,V&#", then there exists

a unique We&#" such that UVCW and if UVCW’ where W/e&.#~, then WCW'’ and
(3) #" is closed under nonempty intersection. If .#" is a nerve, one can define an
operation on the finite set .#~ by U*V to be the unique W given by the nerve. If
(S,d) is a metric space with a bounded metric d, then let 6(A)=sup(BF>0:

N 5(::)CA] where A is a subset of S and Ng(x) is the open sphere of x with

radius S.

LEMMA 3. If S is a finitelv neighborable groupoid, then every open cover has
a nerve refinement.

PROOF. Let Z be an open cover of S. Then there exists a finite cover 7" of S

given by the definition. Let #7~ be the collection of all nonempty intersections of
7". Then #” refines Z’ since 77 is contained in #”. Let A, BE#". Then A=4,

N...NA, and B=B,N... (B, where 4, B,‘,E?“. There is a C&7” such thét
AlBlCC. So ABCC. Let D be the intersection of all sets in 7~ which contain AB.

Then D is that unique element in #Z  that contains AB. Also S=U VY 9 W,
Ve7” wew”

Hence 7~ is the desired refinement.

If € is a nerve of a metric finitely neighborable groupoid S and /EN (N is the

set of positive integers), then we denote Z7 <% if Z is a nerve of S satisfying:
Z

(a) diam U <1/2'i for each UeZ

(b) Z refines {C°|CEF)

(o)t UeZ, We¥% and UNW#¢, then UNWEZ

() fUSZ,WEF and W %4, then diamU<-5- ().

LEMMA 4. If & is a nerve of a metric finitely neighborable groupoid S and
tEN, then there exists Z <% .
?

PROOF. Let L be a Lebesgue number for {Co#gﬁlCE‘?}. Choose &€>0 such that

¢ 1S smaller than all of L, 1/2" and (1/72)b(W) for all W&%. By Lemma 3, there
exists #” a nerve of S with diam U<e for each UE%. Then Z'={WNC#H|W
&7, (&%} is the desired nerve.

THEOREM 5. If S is a metric finitely neighborable groupoid, then there exists
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a continuous homomorphism f from a compact tolally disconnected groupoid P
onto S.

PROOF. By Lemma 4, one can get a sequence of nerves Z/,,%Z,,... such that

Z . 11 <1?/ Eor each 7, consider Z ; as a finite groupoid with the multiplication
i+

U*y.

Let P={(U )zENE Z.|U,, ,CU, for each /EN}.
N

e t+1

One proceeds to show that P is a closed subgroupoid of the product space.
Suppose (U -)z-(____. ~&P. Then there exists JEN such that U ].CZU i1 Let W={U,}

X{Uy} X... X {U}X l'[ #Z .. Then (U, )zeNEW and PNW =¢. Hence P is closed.
Suppose (U,). (V )ENEP Let U )*(V)=UV)=W,. If jEN, then

iEN’
U,,,CU;and U, ,CV.. Hence U; ,V, CUV,CW;. SinceU; | V; | CW;,

and W. it1 NW . EZ/}+1 by property (c) then W, ,CW it ﬂW since Z . i+l is a

nerve. Thus W, CW; implies (W)E&P.

If (U);cyEP, then N U, contains exactly one point since diam U, converges
{EN

to 0. Define f;P—S byf((Uz-)z-EN)=p where p& _QN U.. Suppose f((Uz-)ieN)=p
[
&W where W is open in S. Then there exists U for some 7 such that pEU CW.

Hence f({U} X--X {U .} X 1;[ Z ;N\ P)CW which 1mphes that f 1s continuous.
i>7

Suppose (U) ;e V), yEP and W*(V =W ) and f(U)icpy) =0 F(V )icpy)
=¢. Then pg €(NUD(NV HCU V., C NW, since U,V ,CW,. But NW , contains the
unique pcint f((W),=p). Hence FUW D) =0a=f(UY) F[((V,))), ie., f is a
homomorphism.

Finally, we have to show f is onto. Suppose there exists x&S\ f(P). Then there
exists €>0 such that N_(x)Nf(P)=¢. Let n&N such that 0<1/2"<¢e/2. Then

xEUz for some U nEZ/ .- oince diam U <1/2" then U Nf(P)=¢. Choose >0 such
that (1/2)b(U )<r<b(U,). Then by the definition of 4(U ), there exists N (y)

CU,. Let yEU .41 for some U__ | EZ, +1° One proceeds to show that U U,
Let zEUﬂH. Then d(y, z)<diam Uﬂ+1<(1/2)b(Un) <r. Hence z&N_ (y)CU,. So

we have found U, | €%, , such thatU  ,CU,. Continuing this process, one can

find U, ., U, o ... suchthat U, .€%,6 , and U, . CU .. ..

Also U CU, , for some U, , €% _, since Z, refines Z ,_,, Hence we have
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Uucu, CU, ,C--CU,CU; where U; €Z;. Thus there exists a sequence U,
U,, Us,-U,, - such that U, , CU,; and U, €%, Let a=f((U), N). Then a &€

r']NU CU But U N f(P)=¢. Thus we have a contradiction.
=

THEOROM 6. If S is @ finitely neighborable groupoid, then S is a quotient of
a compact tfotally disconnected groupoid.

PROOF. Since S is compact, then 82@ S, where S, is a compact metrizable
groupoid and the projection function =, from S to S, is surjective. Hence S, is
finitely neighborable for each a. Let f a_, be a continuous homomorphism from a
compact totally disconnected groupoid T, onto S,. Then f: T[IT, — Il S, is a
continuous surjective homomorphism where f((Z, ))=(f a;'(i'a)). Then f] £-1(S) is a

continuous homomorphism from f_1 (S) onto S. Since f_lCS) is a subspace of a
product of totally disconnected spaces T, then f_l(S) is totally disconnected.

COROLLARY 7. If X is a compact Hausdorff space, then there is a compact
totally disconnecied Hausdorff space T and a continuous function from T orto X.

PROOF. Put the multiplication xy=x on X and apply Theorem 6.

QUESTION. If S is a finitely neighborable semigroup, then is there a compact
totally disconnected semigroup 7 and a cotinuous homomorphism from 7" onto S ?

These are some examples of finitely neighborable semigroups.

EXAMPLE 1. If S is a compact semigroup with a basis of open subsemigroups,
then S is finitely neighborable.

More specific examples like compact semilattices with small -semilatﬁceq can
~ be found in (1], [3], (4] and [5], e.g., [0,1]) with xy=min {x,y} ora product of

[0, 1] or a closed subsemigroup thereof.

EXAMPLE 2. The interval [0, z‘] under real multipilication where #<1.
Since #: [0, ] —[0, 1/2] defined by A(x)=(1/2)"***/'%8! is a topological isomorphism,
it is enough to check [0,1/2] is finitely neighborable.. Use these facts about
, 172]: (1) if |x-y| <k and |e-b| <k, then |xe-yb[<maxf{k &}, (2) if €>0, then
there exists n>0 such that [0, 1/2]’ C[O e]l. Let'Z be a finite cover of [g, 1/2]
by open sets of diametei less than e. Form 7" by taking U 1U U where k=7
and U,€ Z. Then VU{ 0,&)} is the required refmement |

- North Texas State University
Denton, Texas 76203 U.S. A.
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