Kyungpook Math. J.
Volume 16, Number 2
December, 1976

FINITELY NEIGHBORABLE GROUPOIDS

By A.Y.W. Lau

Let Gpd be the category of compact groupoids and continuous homomorphisms. A subclass S is constructed by taking Cartesian products of finite groupoids, closed subgroupoids of the products and continuous homomorphic images thereof. It will be shown that S is precisely the class of finitely neighborable groupoids. Since a compact connected group like the circle group is not finitely neighborable, S is a proper subclass of Gpd.

A groupoid S is a Hausdorff space with a binary operation $\cdot : S \times S \to S$. A groupoid S is said to be finitely neighborable if for every open cover of S, there exists a finite refinement $\mathscr U$ such that $S = \bigcup_{U \in \mathscr U} U^0$ where U^0 is the interior of U and if U, $V \in \mathscr U$, then there is a $W \in \mathscr U$ such that $UV \subset W$. Clearly, a finitely neighborable groupoid is compact.

LEMMA 1. A finitely neighborable groupoid is a topological groupoid (i.e., the operation is jointly continuous).

PROOF. Let $x, y \in S$ where S is a finitely neighborable groupoid, and let $xy \in U$ where U is an open set. Then $\mathscr{V} = \{U, S \setminus xy\}$ is an open cover of S. Let \mathscr{U} be the refinement, and $x \in A^0$, $y \in B^0$ for some $A, B \in \mathscr{U}$. Then $AB \subset C$ for some $C \in \mathscr{U}$. Hence $C \subset U$ since $xy \in C$.

In [2], the following theorem was shown for semigroups, but the proof could be adapted to the groupoid case.

THEOREM 2. Let $\{S_{\alpha}\}$ be a collection of finite groupoids. Then each of the following is finitely neighborable:

- (1) a Cartesian product of $\{S_{\alpha}\}$
- (2) a closed subgroupoid of the product
- (3) a continuous homomorphic image of a closed subgroupoid of the product.

If one takes all finite groupoids and constructs the class given by (1), (2), (3), then the resulting class S is contained in the class of finitely neighborable groupoids. The ensuing propositions establish that the two classes are the same.

Before proceeding to the lemmas, a nerve \mathscr{N} of a groupoid S is defined to be a finite cover of S such that (1) $S = \bigcup_{N \in \mathscr{N}} N^0$ and (2) if $U, V \in \mathscr{N}$, then there exists a unique $W \in \mathscr{N}$ such that $UV \subset W$ and if $UV \subset W'$ where $W' \in \mathscr{N}$, then $W \subset W'$ and (3) \mathscr{N} is closed under nonempty intersection. If \mathscr{N} is a nerve, one can define an operation on the finite set \mathscr{N} by U^*V to be the unique W given by the nerve. If (S,d) is a metric space with a bounded metric d, then let $b(A) = \sup\{\beta > 0: N_{\beta}(x) \subset A\}$ where A is a subset of S and $N_{\beta}(x)$ is the open sphere of x with radius β .

LEMMA 3. If S is a finitely neighborable groupoid, then every open cover has a nerve refinement.

PROOF. Let $\mathscr U$ be an open cover of S. Then there exists a finite cover $\mathscr V$ of S given by the definition. Let $\mathscr W$ be the collection of all nonempty intersections of $\mathscr V$. Then $\mathscr W$ refines $\mathscr U$ since $\mathscr V$ is contained in $\mathscr W$. Let $A,B{\in}\mathscr W$. Then $A{=}A_1$ $\cap\ldots\cap A_n$ and $B{=}B_1\cap\ldots\cap B_m$ where A_i , $B_i{\in}\mathscr V$. There is a $C{\in}\mathscr V$ such that $A_1B_1{\subset}C$. So $AB{\subset}C$. Let D be the intersection of all sets in $\mathscr V$ which contain AB. Then D is that unique element in $\mathscr W$ that contains AB. Also $S{=}\bigcup_{V{\in}\mathscr V}V^0{\subset}\bigcup_{W{\in}\mathscr W}W^0$. Hence $\mathscr W$ is the desired refinement.

If $\mathscr C$ is a nerve of a metric finitely neighborable groupoid S and $i \in N$ (N is the set of positive integers), then we denote $\mathscr U < \mathscr C$ if $\mathscr U$ is a nerve of S satisfying:

- (a) diam $U < 1/2^i$ for each $U \in \mathcal{U}$
- (b) \mathscr{U} refines $\{C^0 | C \in \mathscr{C}\}$
- (c) if $U \in \mathcal{U}$, $W \in \mathcal{C}$ and $U \cap W \neq \phi$, then $U \cap W \in \mathcal{U}$
- (d) if $U \in \mathcal{U}$, $W \in \mathcal{C}$ and $W^0 \neq \phi$, then diam $U < \frac{1}{2}$ b(W).

LEMMA 4. If \mathscr{C} is a nerve of a metric finitely neighborable groupoid S and $i \in \mathbb{N}$, then there exists $\mathscr{U} < \mathscr{C}$.

PROOF. Let L be a Lebesgue number for $\{C^0 \neq \phi | C \in \mathscr{C}\}$. Choose $\varepsilon > 0$ such that ε is smaller than all of $L, 1/2^i$ and (1/2)b(W) for all $W \in \mathscr{C}$. By Lemma 3, there exists \mathscr{W} a nerve of S with diam $U \leq \varepsilon$ for each $U \in \mathscr{U}$. Then $\mathscr{U} = \{W \cap C \neq \phi | W \in \mathscr{W}, C \in \mathscr{C}\}$ is the desired nerve.

THEOREM 5. If S is a metric finitely neighborable groupoid, then there exists

a continuous homomorphism f from a compact totally disconnected groupoid P onto S.

PROOF. By Lemma 4, one can get a sequence of nerves $\mathscr{U}_1, \mathscr{U}_2, \ldots$ such that $\mathscr{U}_{i+1} < \mathscr{U}_i$. Eor each *i*, consider \mathscr{U}_i as a finite groupoid with the multiplication U*V.

Let $P = \{(U_i)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} \mathcal{U}_i | U_{i+1} \subset U_i \text{ for each } i \in \mathbb{N}\}.$

One proceeds to show that P is a closed subgroupoid of the product space. Suppose $(U_i)_{i\in N}\notin P$. Then there exists $j\in N$ such that $U_j\not\subset U_{j-1}$. Let $W=\{U_1\}\times\{U_2\}\times\ldots\times\{U_j\}\times\prod_{i>j}\mathscr{U}_i$. Then $(U_i)_{i\in N}\in W$ and $P\cap W=\phi$. Hence P is closed.

Suppose $(U_i)_{i\in N}$, $(V_i)_{i\in N}$ \in P. Let $(U_i)^*(V_i) = (U_i^*V_i) = (W_i)$. If $j\in N$, then $U_{j+1}\subset U_j$ and $U_{j+1}\subset V_j$. Hence $U_{j+1}V_{j+1}\subset U_jV_j\subset W_j$. Since $U_{j+1}V_{j+1}\subset W_{j+1}$ and $W_{j+1}\cap W_j\in \mathcal{U}_{j+1}$ by property (c), then $W_{j+1}\subset W_{j+1}\cap W_j$ since \mathcal{U}_{j+1} is a nerve. Thus $W_{j+1}\subset W_j$ implies $(W_i)\in P$.

If $(U_i)_{i\in N}\in P$, then $\bigcap_{i\in N}\overline{U}_i$ contains exactly one point since diam U_i converges to 0. Define $f;P\to S$ by $f((U_i)_{i\in N})=p$ where $p\in\bigcap_{i\in N}\overline{U}_i$. Suppose $f((U_i)_{i\in N})=p$ $\in W$ where W is open in S. Then there exists U_j for some j such that $p\in\overline{U}_j\subset W$. Hence $f(\{U_1\}\times\dots\times\{U_j\}\times\bigcap_{i>j}\mathcal{U}_i\cap P)\subset W$ which implies that f is continuous.

Suppose $(U_i)_{i\in N}$, $(V_i)_{i\in N}\in P$ and $(U_i)^*(V_i)=(W_i)$ and $f((U_i)_{i\in N})=p$, $f((V_i)_{i\in N})=q$. Then $pq\in (\cap \overline{U}_i)(\cap \overline{V}_i)\subset \overline{U_iV_i}\subset \cap \overline{W}_i$ since $U_iV_i\subset W_i$. But $\cap \overline{W}_i$ contains the unique point $f((W_i)_{i\in N})$. Hence $f((W_i)_{i\in N})=pq=f((U_i))$ $f((V_i))$, i.e., f is a homomorphism.

Finally, we have to show f is onto. Suppose there exists $x \in S \setminus f(P)$. Then there exists $\varepsilon > 0$ such that $N_{\varepsilon}(x) \cap f(P) = \phi$. Let $n \in N$ such that $0 < 1/2^n < \varepsilon/2$. Then $x \in U_n^0$ for some $U_n \in \mathcal{U}_n$. Since diam $U_n < 1/2^n$ then $U_n \cap f(P) = \phi$. Choose r > 0 such that $(1/2)b(U_n) < r < b(U_n)$. Then by the definition of $b(U_n)$, there exists $N_r(y) \subset U_n$. Let $y \in U_{n+1}^0$ for some $U_{n+1} \in \mathcal{U}_{n+1}$. One proceeds to show that $U_{n+1} \subset U_n$. Let $z \in U_{n+1}$. Then $d(y,z) \le \dim U_{n+1} < (1/2)b(U_n) < r$. Hence $z \in N_r(y) \subset U_n$. So we have found $U_{n+1} \in \mathcal{U}_{n+1}$ such that $U_{n+1} \subset U_n$. Continuing this process, one can find U_{n+1} , U_{n+2} , ... such that $U_{n+i} \in \mathcal{U}_{n+i}$ and $U_{n+i} \subset U_{n+i-1}$.

Also $U_n \subset U_{n-1}$ for some $U_{n-1} \in \mathcal{U}_{n-1}$ since \mathcal{U}_n refines \mathcal{U}_{n-1} . Hence we have

 $\begin{array}{l} U_n \subset U_{n-1} \subset U_{n-2} \subset \cdots \subset U_2 \subset U_1 \text{ where } U_i \in \mathbb{Z}_i. \text{ Thus there exists a sequence } U_1, \\ U_2, \ U_3, \cdots U_n, \cdots \text{ such that } U_{i+1} \subset U_i \text{ and } U_i \in \mathbb{Z}_i. \text{ Let } a = f((U_i)_{i \in \mathbb{N}}). \text{ Then } a \in \mathbb{N} \\ \bigcap_{i \in \mathbb{N}} \overline{U}_i \subset \overline{U}_n. \text{ But } \overline{U}_n \cap f(P) = \phi. \text{ Thus we have a contradiction.} \end{array}$

THEOROM 6. If S is a finitely neighborable groupoid, then S is a quotient of a compact totally disconnected groupoid.

PROOF. Since S is compact, then $S=\varprojlim S_{\alpha}$ where S_{α} is a compact metrizable groupoid and the projection function π_{α} from S to S_{α} is surjective. Hence S_{α} is finitely neighborable for each α . Let f_{α} be a continuous homomorphism from a compact totally disconnected groupoid T_{α} onto S_{α} . Then $f\colon \prod T_{\alpha}\to \prod S_{\alpha}$ is a continuous surjective homomorphism where $f((t_{\alpha}))=(f_{\alpha}(t_{\alpha}))$. Then $f|_{f^{-1}(S)}$ is a continuous homomorphism from $f^{-1}(S)$ onto S. Since $f^{-1}(S)$ is a subspace of a product of totally disconnected spaces T, then $f^{-1}(S)$ is totally disconnected.

COROLLARY 7. If X is a compact Hausdorff space, then there is a compact totally disconnected Hausdorff space T and a continuous function from T onto X.

PROOF. Put the multiplication xy=x on X and apply Theorem 6.

QUESTION. If S is a finitely neighborable semigroup, then is there a compact totally disconnected semigroup T and a cotinuous homomorphism from T onto S?

These are some examples of finitely neighborable semigroups.

EXAMPLE 1. If S is a compact semigroup with a basis of open subsemigroups, then S is finitely neighborable.

More specific examples like compact semilattices with small semilattices can be found in [1], [3], [4] and [5], e.g., [0,1] with $xy=\min\{x,y\}$ or a product of [0,1] or a closed subsemigroup thereof.

EXAMPLE 2. The interval [0, t] under real multipilication where t < 1.

Since $h: [0, t] \to [0, 1/2]$ defined by $h(x) = (1/2)^{\log x/\log t}$ is a topological isomorphism, it is enough to check [0, 1/2] is finitely neighborable. Use these facts about [0, 1/2]: (1) if |x-y| < h and |a-b| < k, then $|xa-yb| < \max\{h, k\}$, (2) if $\varepsilon > 0$, then there exists n > 0 such that $[0, 1/2]^n \subset [0, \varepsilon]$. Let $\mathscr U$ be a finite cover of $[\varepsilon, 1/2]$ by open sets of diameter less than ε . Form $\mathscr V$ by taking $U_1U_2\cdots U_k$ where $k \le n$ and $U_i \in \mathscr U$. Then $\mathscr V \cup \{[0, \varepsilon)\}$ is the required refinement.

North Texas State University Denton, Texas 76203 U.S.A.

REFERENCES

- [1] D.R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965), 35 —46.
- [2] A.Y.W. Lau, Coverable Semigroups, Proc. Amer. Math. Soc., Vol. 38, No.3 (1973), 661—664.
- [3] _____, Small semilatices, Semigroup Forum, Vol. 4(1972), 150-155.
- [4] J.D. Lawson, Topological semilattices with small semilattices, J.London Math. Soc. (2) 1 (1969), 719-724.
- [5] J.W. Stepp, Semilattices which are embeddable in a product of min intervals, Semigroup Forum 2 (1971), 80—82.