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ON SOME METHODS OF SUMMABILITY
By Ashok Kumar

1. Introduction

The concept of generalised Norlund summability (N, #, «) has been introduced
and investigated by Borwein [1] and Das [3,4]. In [4], Das has considered the
most general problem of relative effectiveness of (NN, 5, «) and (N, ¢, 8) methods
and has established various inclusion and equivalence theorems.

In the present paper, we further investigate the some problem and prove some
more 1nclusion and equivalence theorems. It is interesting to note that our results
generalise many known results including those of Borwein and Cass [2, Theorems

3 and 5], and Cesaro and Hardy [5, Theorems 14 and 23]. Incidently, some new

results of inclusion and equivalence are obtained as particular cases of our
theorems.

2. Preliminaries

We define the convolution (p*«), of two sequences { p,} and {a,} of real numbers

dsS

(p*at), = Z__O b, O,

We shall make use of the fact that the operation of convolution is commutative
and associative.

OO
Let Z]O ¢ be an infinite series with {s} as the sequence of partial sums. Let
H=

{p,} and {a,} be sequences of real numbers such that
(pra),#0 for =0, =0 for #<0.

Then Zo a,(or {s }) is said to be summable by the generalised Noriund method
“—

(N, p, o) Eo the value s, if

(p*as),,
(p*a),,

=S as N0,
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and is denoted by
,Zocz”=s (N, p, ) or s,—s (N, p, ).

See for example [4].
The method (N, p, ) reduces to the Norlund methed (N, p) when a,=1 (5, p. 64]
and to the method (N, ) when p, =1 [5, p.57].

The method (N, p, ) is said to be regular if it sums every convergent series
to its ordinary sum. If p,>0, a >0 for n>0, then the necessary and sufficient

condition for the regularity of (N, p, ) method 1s
p,_,=o((pra),)
as n—oo (p fixed), (see [(4]).

Given any sequence {p }, we write

p(2)= Zopnz”

H=
whenever the series on the right converges. We define the séquence {£ } of
constants by means of the formal identity

k(z)—*ggg . k_,=0.

As usual we say that the sequence {p &, if

_ p p
PO——L p >0, ntl < nt2 <1 for #=0, 1,2, - ..
pﬂ pn+1

If P and Q are methods of summability, we say that Q is more effective than

P if every series summable P is also summable Q to the same sum and write
P—Q. If P—Q and Q——> P, then we say that the methods are equsvalent and

write PQ.
In the rest of the paper it is assumed that p, >0, ¢ >0, a, >0, §,>0 for #=0.

2, The Lemmas

In order to prove our theorems we need a few lemmas.
LEMMA 1. Suppose that {p }EM.

(a) If

Dy < ‘P
pn-—-l Tn—1

then ky>0 and k =0 for n>0.

for n>0, (1)
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(b) If

q?z < pn
Qpn—1 pﬂ—l

then k>0 and k, <0 for n>0.

for n>0, (2)

The proofs of (a) and (b) are respectively contained in the proofs of Theorem
23 of [5] and Theorem 3 of [2].

LEMMA 2. Let {p}EM, q,=0(p,) and (1) hold. Then, if (N,q, a) is regulaz,
(N, p, ) is regular. ‘

By virtue of (1), it can be easily verified that
g,=0(p,) implies (g*a) =0((p*a),). (3)

Since, by definition, qﬂ:(k*p)n, therefore, by Lemma 1 (a), k,p,<q, Thus,

using (3) and the regularity of (&, ¢, ), we find that, for v fixed,
p,_,=o((p*a),),

which proves that (N, p, &) is regular.

LEMMA 3. The inclusion (N, p, x)—>(N, q, v) holds if and only if
(k|| pra]),=0((g*a) )
and

k,_ =o((g*xa) )

as n—oo(y fixed).
This is Lemma 1 of [4] with a, =B, for every .

In proving our theorems, we shall very frequently appeal to Theorem 1 of [4],
and so for the sake of completeness we state it here as:

LEMMA 4. Let {p }&M, (1) hold and let either the set of conditions

Al :_‘8:*: ~ ‘8n+l

an o an—!—l

A, (N,q, B) is regular,

or the set of condilions
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B, (a*ar)
B,: P ™y
2, O

By (N, q, ) is regular,

hold. Ther
(N, p, x)=—>(N, q, B).

4. Main results

THEOREM 1. If {p,}&EM, p,=0(g), (N, q, ) is regular and
qﬂ pﬂ
<<
/P pn—l
then (N, p, ) is regular and

(N, p, ) —> (N, g, o).

for n>n, (4)

PROOF. Case #,=0. Using Lemma 1(b), we have

(gxa) , <ky(pra),,
and since
p,=Hq,
(where H is a positive constant), therefore, for fixed u,
(ii;i <kH ik
=0(1)
by the regularity of (N, q, «). Thus (N, p, o) is regular.

Now
\E|%p), =kop, — kD, ——F py=2k.p ~aq,<2kp +q =0(g,) (5
since p,=0(q,). Using (5) and the regularity of (N, ¢, &), we obtain
&, | p<C|kl*p),=0(g,)=0((g*a),).
<(q~m')n for v >0, so
k,—,=0((g*a) ).

Since 0<(g*xa)

in—Ly

Further
(lelxpra) =2k (prar), — (kxpra) <2k (prc) +(g*a) =0((g*a),)

since, by using (4), it can easily be verified that
p,=0(g,) implies (p*a) =0((g*c),).
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The result now follows by lLemma 3.
For the general case, we construct a sequence {r } in the following manner.

We have

qH - pn
T

Tpn—1 o pu—l

for n=mn,+1, ny+2, -

Write

tﬂ=qn for n:no’ no I, <

and define ¢, recursively for n=n,—1, n,—2, -, 0, such that ¢, >0, and

Zc:|+z+1 <min ( zlM+2 qn+1_ pn+1 )
ZL:w: o z¢;~+z+1 ’ 9, , pn
A
Now setting rﬂ=—t—”-, we find that
0
7 Ty 7 Py
{rﬂ}EDﬁ, ) S - < fOI‘ ”>O-

rrz—-l qn—l’ Fyu—-1 pn—l
We also have g, =0(r ).

Now, since (N, 7, ) is regular (by Lemma 2), and p,=0(g,)=0(7,), thereiore,
by the case #,=0, it follows that (N, p, &) is regular and

(N,pa) = (N, 7, o). (6)
Further, by Lemma 4 with « =8 and p, replaced by r, we obtain
(N,7, ) = (N, g, a). (7

The result follows from (6) and (7).

THEOREM 2. If, in addition to the hypotheses of Theorem 1, {q }EM, then
(N, pa) < (N, q, ).

PROOF. It has been established in Theorem 1 that, under the given hypotheses,
(N, p, ) is regular.

Now, in the case #,=0, taking a =g, and interchanging p, and ¢, in Lemma 4
we obtain (N, q, ) —> (N, p, ). This in conjunction with the case #,=0 of
Theorem 1 yields the result. | | :

For the general case define {#,} as in the proof of Theorem 1. Interchanging o,
and ¢, and then writing 7, for q, In Lemma 4 (with a*ﬂ=48ﬂ), we obtain

(N, r,a) —> (N, p, ).
Further, since (N, 7, &) is regular (by Lemma 2) and ¢q,=0(7 ), so by the case
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n,=0 of Theorem 1, (N, q, a) =—> (N, 7, «v) (this is obtained by interchanging b,
and ¢, and then writing #», for p, in Theorem 1). Thus

(N,q, ) —= (N, p, o).
Combining this with Theorem 1, we obtain the desired result.

THEOREM 3. Suppose that peE! {g e, p,=0(q,) and that (4) holds.

Suppose also that either the set of conditions A or the set of conditions B of Lemma 4
hold. Then

(N, h, &) => (N, g, B).

PROOF. We claim that under the given sets of conditions A and B, (N, g, &) is

regular. This is included in the set of conditions B. Under the set of conditions
A, since

(grar), > gs (g%B), (by A,

therefore, for fixed u,

qn—u_< ‘80 qﬂ—uﬂ
(gra), — a, (g*06),

:0(1) (by AZ)’

which implies that (N, g, o) is regular.
Now, in the case #,=0, (N, p, «) —> (N, g, ) by Theorem 1 and (N, ¢, &) ==

(N, q, 3) by Lemma 4 (with pnzqn), and thus
(N, p ) = (N, g, 5).

For the general case, define {r } as in the proof of Theorem 1. Again, by
Theorem 1, (N,p,a) —> (N,r,a), and by Lemma 4, (N,r, o) —> (N, q, B).
Hence (N, p, o) = (N, g, 8). This completes the proof.

THEOREM 4. Let {p }EM and let

/B

- for n>n,.

Subpose that either the set of conditions A or the set of conditions B of Lemma 4

hold.
If (N, p, ) is regular, then

(N, p, ) —> (N, g, B).

PROOF. The case #,=0 is Theorem 1 in [4]. It is to be noted that, in this
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case, we do not require the regularity of (N, p, «) method.
For the general case, interchaﬁging p, and ¢, in the construction of {r,} (cf.
the proof of Theorem 1), we obtain
4 Py e d,

r }JeM, ————=<: \ <
& rn—l ﬁn-—l Y p—1 dp—1

for n>0

and
p,=0(r,). (8)
Because of (8) and the fact that (W, p, ) is regular, it follows from Lemma 2

that (V, 7, «)is regular. Thus, by the case #,=0 of Theorem 1, (N, p a) =
(N, r,a); and by Lemma 4 (with p, replaced by r,) (N, 7,a)=—>(N, g, 5. Hence

(N, p,a) =—> (N, g, B)

as required

COROLLARY 1. Suppose that the hypotheses of Theorem 4 are satisfied. Then,
if q,=0(p,),

(N, p, ) = (N, g, B)-

PROOF. Since qﬂ=0(pn)=0(rﬂ)(by(8)) and since (N, g, «¢) is regular (cf. the
proof of Theorem 3), it follows from Lemma 2 that (N, 7 «a) is regular, and

hence (N, p, «v) is regular (by Theorem 1). The result now follows from Theorem 4.
5. Special cases

As particular instances of our theorems, we obtain following known and
unknown results.

Taking a, =1 in Theorem 1, we obtain Theorem 3 of [2]. It is worth mentioning

that in [2] the only case in which (4) holds for #,=0 has been considered. Also

nutting p, =1, we obtain

THEOREM 1. If (N, q, ) is regular, ql =0(1) and q,<q,_, for n>ny; then
n

(ﬁra.) j(NIQIa)'
The case #,=0 of Theorem 1” is [4, Theorem 3(ii)]; for, in this case,

1=0(g,) implies (1*e) =0((g*a),).

By taking «,=1 and interchanging p, and ¢, in Theorem 2 we deduce first

clause of Theorem 5 in [2]. Another important special case of Theorem 2 is
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THEOREM 2°. If {p } &, ; =0(1) and (N, p, ) is regular, then
72

(N, a) & (N, p, ).

This is cbtained by putting p,=1 and then writing 2, for ¢, Under slightly

different conditions, a part of the result of Theorem 2, namely (N, p, a)=—>(N, a),

has been established by Das [3, Theorem 4].
By substituting p =1, 3, =1 in Theorem 3, we obtain

THEOREM 3'. Let {q,} &M and ; =Q(1). Suppose that either

H

Ala, =2,

o7
B:a,, <a, (¢xa),=0(a,(1xq),), (N,q, ) is regular;
rolds. Then
(..Z—V, Of):(N, ‘?)”

We remark that if ¢, —a as z—oo, then the regularity of (N, g, «) method from
Case B of Theorem 3° may be omitted as it is implied by other hypotheses. Since
{g &M, therefore, for v fixed,

, <_ . _ -
(gra),— an(l*q)n:\: aa*q)f an—ut1y oL

Compare Theorems 3” with Theorem 1(c) of [4] where {¢,} has been assumed

to be increasing.

Also Theorems 1(a) and 1(b) of [4] can easily be deduced from Theorem 3.

It is worth noting that from Theorem 1 of [4] we can deduce Hardy’s Theorem
[5, Theorem 23] for the case 7,=0 only.

But Hardy’s Theorem is completely deducible from our Theorem 4. Also putting
p,=q,=1 in Corollay 1, we obtain Cesaro’s Theorem [5 Theorem 14].
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