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ON THE CATEGORY OF QUASI-UNIFORM SPACES

By John W. Carlson

1. Infroduction

The category of topological spaces has recently attracted a great deal of atten-
tion. Herrlich and Strecker in [2] have considered coreflective subcategories in

the category of topological spaces. Applying their techniques, we are able to
characterize the coreflective subcategories in the category of quasi-uniform spaces.

It is noted that the category of topological spaces is a retract of the category of
quasi-uniform spaces and it is shown that the category of uniform spaces is
coreflective in the category of quasi-uniform spaces.

DEFINITION 1.1. A quasi-uniform structure Z for a nonempty set X is a filter
on X XX satisfying:

(1) A={(x,x): x&€X}CU for each U in Z,
(2) for each U in Z there exists a V in Z with VoV CU.

DEFINITION 1.2. Let Z be a quasi-uniform structure on X. Then let £, ={0CX:
if x&0 then there exists U in Z with x&U [x] CO}.

It is easy to show that Z, is a topology on X. A quasi-uniform structure Z on
X is said to be compatible with a topology ¢ on X if £=¢,,.

In [4], Pervin showed that the collection S={OX0OUX-0)XX: Ot} formed
a subbase for a quasi-uniform structure for a topological space (X,#) which is

compatible with £. An excellent introduction to quasi-uniform spaces may be found
in [3].

2. Category of quasi-uniform spaces

Let & denote the category of quasi-uniform spaces and quasi-uniformly continuous
maps. &  will denote the category of nonempty quasi-uniform spaces.

THEOREM 2.1. In the category &,

(1) a morphism s a monomorphism if and only if it is one-to-one,
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(2) a morphism is an epimorphism if and only if it is surjective,
(3) an isomorphism is a quasi-uniform space isomorphism,
(4) products are the quasi-uniform space products,

(5) coproducts are the disjoint quasi-uniform space union.

For a given set X we let Z ., ,={XXX} and Z ,={UCXXX:4CU}.

THEOREM 2.2. In the category &,
(1) the only initial object is (¢, % 55 gs)
(2) the terminal objects are of the form ({a}, Z ,),

(3) has no zero object,
(4) t'e injective objects are precisely quasi-uniform spaces of the form

(X, Z XX
(5) the projective objectives are precisely quasi-uniform spaces of the form
(X, Z . .

Let f: (X,Z )—Y be surjective and set 7~ equal to the supremum of all quasi-
uniform structures ¢h ¥ for which f is quasi-uniformly continuous. Then f:(X,
7z )—(Y,7") is called a quotient map.

THEOREM 2.3. In the category &7,

(VD) (X, Z)->Y, %) is an extremal monomorphism if and only if (¥Y,%) is
quasi-uniformly isomorphic to the subspace f(X).

(2) q: (X, Z)>(Y,#") is an extremal epimorphism tf and only if (Y, 8 ) is
quasi-uniformly isomorphic to (Y,7") where 7~ is the quotient structure

tnduced by q.

This theorem shows that the extremal monomorphisms in & are precisely the
embedding maps while the extremal epimorphisms are the quotient maps.

Consider the morphism f: (X, Z )—(Y, 7 ). Let Z=f(X) and #Z  be the restriction
of 77 to f(X). Let f: X—Z be defined by f(x)=f(x) foreach xin X. Let/:Z->Y
be the identity mpping. Then f=Zf and & has the epi-mono factorization property.
Moreover, if we let Z7° be the quotient structure on f(X) then f is an extremal
epimorphism and & thus has the extremal epi-mono factorization property. Since
the category & is locally small we have by theorem 3 in (1] that & has the

unique extremal epi-mono factorization property.

THEOREM 2.4. The composite of two extremal epimorphisms in & is an extremal

epimorphism. Thus & has the sirong unique epi-mono factorization property.
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PROOF. Let (X, %) ' (Y, 25 .(Z, %) be given where f and g are extremal
epimorphisms. Let % be the supremum of all quasi-uniform structures on Z for
which gf is quasi-uniformly continuous. Since gf is quasi-uniformly continuous

with respect to #°, we have that Z"<9%. Now consider:

(X, )L, 722, %)

gf\; lgu/z

(Z,5)

; denotes the identity map and is quasi-uniformly continuous since # " <.%. g:(Y,

7 )—(Z,9) is quasi-uniformly continuous since g_1(7/‘) is a quasi-uniform struc-
ture on Y for which f is quasi-uniformly continuous. This follows from the fact
that f is an extremal epimorphism and 7  is the strongest quasi-uniform structure
on Y for which f is quasi-uniformly continuous. Since g: (Y, 7 )—(Z,# ) is an
extremal epimorphism and g=7g where 7 is a monomorphism, we must have that
i: (Z,)—(Z, %) is an isomorphism, Thus <%  and hence & =%". Therefore
gf 1s an extremal epimorphism.

Now since & has the unique extremal epi-mono factorization property and the
composite of extremal epimorphisms is an extremal epimorphism we have that &
has the strong unique extremal epi-mono factorization property.

THEOREM 2.5. The constant morphisms in & are precisely the constant maps.
The category &7, of nonempty quasi-uniform spaces, is constanl generated.

" PROOF. The first statement is evident. Let (X, %) and (Y,7" ) be objects in
Z’. Since Y is nonempty, there exists an element y in Y. Define f: X—>Y by
f(x)=y for each x in X. Thus the set of morphisms from X to Y is nonempty.

Now let f, g: X—Y be distinct morphisms. Then there is an element x in X
with f(x)#g(x). Set Z={x} and £%: (Z, 7 )—(X,%Z) defined by k(x)=x 1is a

constant morphism such that fk#gk. Hence &’ is constant generated.

3. Coreflective subcategories

In this section each subcategory considered is assumed to be nontrivial. A
subcategory Z of a categry ¥ is said to be coreflective in & if for each object X
in & there exists an object X, in 7% and a morphism ¢y » Xy—X, called the

coreflective morphisms, such that for each object B in Z and morphism g:B—X
there exists a unique morphism %: B—X,, such that g=cy k. Z is called epicore-

flective if additionally each coreflective morphism is an epimorphism and it is
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called mono- coreﬂeetlve if each coreflective morphism 1Is a monomorphism.
- For the convience of the reader we state the followmg theorems found in [1]

THEOREM A. If % is a coreflective subcategory of a constant genemted caz‘egory
Z then % is both mono-coreflective and epi-coreflective.

THEOREM B. If & is a category which is

(a) locally small, o

(b) has products,

(c) has the extiremal epi-mono faclorization property,

and if Y isa subcategory of & then the following statements are equivalent.
(D Z is mono-éoreflectz‘ve in % . |

(2) Z is closed under the formation of coproducts and extremal quotient objects.

THEOREM 3.1. Let Z be a subcategory of &. The following statements are
equivalent.

(1) Z is coreflective in &,

(2) Z is mono-coreflective and ep:-coreflective in &,

(3) Z is closed under the formation of disjoint unions and quotient objects.

PROOF. (1)&=(2) Let Z be a coreflective subcategory of ¢. Since we are
considering only nontrivial subcategories we have that Z is coreflective in

g<—>Z &’ is coreflective in &7. Since & is constant generated by theorem 2. 5,
we have by theorem A that each coreflective subcategory of &’ must be both
mono-coreflective and epi-coreflective. Hence each coreflective morphism ¢,: X, —
X 1S one-to-one and onto. ‘

(2)&>(3) Since & satisfies the hypothesis for theorem B we have that a
subcategory Z of & is mono-coreflective if and only if (8) is satisfied, but if Z
iS mono-coreflective then it is epi-coreflective by (1)=—>(2).

We now establish that for each subcategory Z of & there exists a smallest
'coreﬂeetive subcategory (%) containing Z and moreover that the objects of
F (%) are precisely the quotient objects of disjoint unions of members of Z.
The following theorems are found in [1].

THEOREM C. If & s a category which ts
(1) locally small,
- (2) has coproducts, and
(3) has the extremal epi-mono factorization properiy

and if Z is a subcategory of € then there exists a smallest wmono-coreflective
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subcm‘egory Z of & containing  Z'. Furthermore, if € has the strong unique

exz‘remal e;bz -mono factorization property them the objects of F are exactly all

extremal quotient objects of coproducts of objects in Z

Let €(Z ) denote the smallest mono-coreflective subcategory .in the category &
containing the subcategory Z'.

THEOREM D. If & is a category which
(1) is locally small,

(2) has coproducts,
(3) has the strong unique extremal epi-mono factorization property,
and if Z is any subcategory of € then each monomorphism in % which is Z -liftable

is also (% )-liftable.

Using theorems C and D together with the fact that each coreflective subcategory

in & is mono-coreflective we have the following theorem.

THEOREM 3.2. Let Z be and subcategory of &. Then

(1) there exists a smallest coreflective subategory () containing Z,

(2) objects of B (Z') are precisely the quotient objects of disjoint unions of objects
in %,

(3) each monomorphism in c.'?' which is Z -liftable is F(Z )-liftable.

We now consider some interesting subcategories of ¢ that are coreflective in &.

THEOREM 3.3. The category of uniform spaces is a coreflective subcategory in
&, the category of quasi-uniform spaces.

PROOF. Let (X,Z ) be a quasi-uniform space. Now (X,ZVZ _I) is a uniform
space and the identity map 7: (X, ZVZ "1)—->(X , %) is quasi-uniformly contin-
uous. Let (Y,7 ) be any uniform space and f a morphism from (Y, 7") to (X,
Z). Define f: (Y, 7 )—(X, Z/\/%_l) by F(9)=f(y) for each y in ¥. Now f=if
and f is unique. We must show that f: (¥, 7)—~>(X,¥\V¥ _1) 1s quasi-uniformly
continuous. It suffices to show that f _]'(U ﬂUhl)EV for each U&EZ. Let
UeZ’, then f_l(U Ye?Z" and hence f_l(U)EV. Since 7 is a uniform structure,
there exists a symmetric VE€?  with VCf‘_l(U). Thus VCf_l(U “1) and

f'_l(U NU _1)67. Hence f is quasi-uniformly continuous.

THEOREM 3.4. The category of fine quasi-uniform spczces 18 corefleciive in lhe
category of qzmsz -uniform spaces.
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The proof of this theorem is natural. A quasi-uniform space (X,Z) is called

saturated if Z is closed under arbitrary intersections. A space 1is saturated if and

only if the structure Z has a base consisting of a single set.

THEQREM 3.5. The category of saturated quasi-uniform spaces s coreflective
in &.

PROOF. Let (X,Z) be a quasi-uniform space. Set S=N{U:U&%}. Then
SoS=S and {S} forms a base for a saturated quasi-uniform structure . Let

i (X, ¥)—>(X,7Z) denote the identity map, then 7 is quasi-uniformly continuous.
Suppose that (¥,7 ) is a saturated space and f:(Y,7 )—(X,% ) a morphism in
Z. Now define f: (Y, 7 )—(X,.%) by f(9»)=f(y) for each y in Y. Then f=:f
and f is unique. To see that f is quasi-uniformly continuous, note that 77 is

generated by a base {T'}. Then for each U in Z we have TCf_l(U) and thus
TCf_‘l(U). Therefore TCN{F ') : UEZ) =F N : UeZ})=F"(S).
Hence f is quasi-uniformly continuous.

4. Special functors
In this section we consider two natural functors.

THEOREM 4.1. The category of topological spaces is a retract of the category

&, the category of quasi-uniform spaces.

PROOF. Let % denote the subcategory of & of quasi-uniform spaces with the
Pervin quasi-uniform structure. . will denote the category of topological spaces
and continucus maps. Let T: &—9 be the natural functor from a quasi-uniform
space to the underlying topological space. Let P: 9 —%° be the functor that
associates with each topological space the corresponding Pervin quasi-uniform
space. Now Z is a full subcategory of &, and the functor PT: - is the

identity functor on &. Also TP: 9 —.Z is the identity functor on .2 . Hence
S, a full subcategory of &, is a retract of € and & and 9 are isomorphic.

Define R: &—-& by (X, % )—(X, ?/_1). If £:(X,Z)—(,7 ) is a morphism in
& then define R(F)(x)=f(x) for each x in X. R will be called the conjugate

functor on &.

THEOREM 4.2. R is a functor on & such that RoR is the identity functor on &.
The jixed points of R are precisely the uniform spaces.

PROOF. Let f:(X,%)—(Y,?") be 2 morphism in &, and let V" "€Z "L, Then
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Ve?Z” and there exists a UEZ with UCf_l(V). Thus UHICf_I(V—l) and
- (X, Z "'1)—+(Y , 9’/'_1) is quasi-uniformly continuous. The other properties are
easy to verify and R is indeed a functor on &. That RoR is the identity on & 1s
evident. Now R((X,Z))=(X,Z ) if and only if Z =% ~! Thus the fixed poInts
of R are precisely the uniform spaces.
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