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ON THE CATEGORY OF QUASI-UNIFORM SPACES 

By John W. CarIson 

1. Introduction 

The category of topologicaI spaces has recently attracted a great deaI of atten­

tion. HerrI ich and Strecker in [2] have considered coreflective subcategories in 

the category of topologicaI spaces. Applying their techniques. we are able to 

characterize the coreflective subcategories in the category of quasi-uniform spaces. 

It is noted that the category of topologicaI spaces is a retract of the category of 

quasi-uniform spaces and it is shown that the category of uniform spaces is 

coreflective in the category of quasi-uniform spaces. 

DEFINITION 1. 1. A qμasz'-unzform strμctμre ~ for a nonem.pty set X is a fiIter 

on XxX satisfying: 

(1) LI={(x.x): xεX} ζU for each U in ~. 

(2) for each U in ~ there exists a V in ~ with VoVCU. 

DEFINITION 1. 2. Let ~ be a quasi-uniform structure on X. Then Iet t?/ = {OCX: 

if xεo then there exists U in ~ with xεU[x]CO}. 

It is easy to show that t?/ is a topology on X. A quasi-uniform structure ~ on 

X is said to be comþatz'ble with a topology t on X if t=t?/. 

In [4]. Pervin showed that the coIIection S= {OXOU(X -O)XX: 0εt} formed 

a subbase for a quasi-uniform structure for a topologicaI space (X. t) which is 

compatible with t. An exceIIent introduction to quasi-uniform spaces may be founrl 

in [3]. 

2. Category of quasi~uniform spaces 

Let tl denote the category of quasi-uniform spaces and quasi-uniformly continuous 

maps. tl' w iII denote the category of nonempty quasi-uniform spaccs. 

THEOREM 2. 1. In the category tl. 
(1) a morþhism z's a monomorþhz'sm zf and only zf z't is o:ze-to-one. 
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(2) a morphz"sm z's an epimor.ψhz"sm zf and only zf zï z's surjective. 

(3) an isomor.ψhz'sm z's a qμσsi-umform S，φace isomorphism. 

(4) products are the quasz" -unz"lorm space products. 

(5) coproducts are the d z"sjoint quasi-umform space unz"on. 

For a given set X we Iet ~Xyx={XXX} and ~Ll={UCXXX: LlCU). 

THEOREM 2.2. In the category tl. 

(1) the only z'mïial object Z" S (rjJ. ~ øxø) 

(2) the termz'nal objects are 01 the lorm ({a}. ~ L1)' 

(3) hαs no zero object. 

(4) t ‘ e z'njec!z"ve objects are φreâsely quasi-umform spaces 01 the lorm 

(X , ~ xxx)' 
(5) the projec!z"ve objec!z"ves are P1’eâsely quasi-μmform spaces 01 the lorm 

(X, ~L1)' 

Let 1: (X, Z!)• Y be sur jecti ve and set γ equaI to the supremum of aII quasi­

uniform structures 에1 Y for which 1 is quasi-uniformly continuous. Then 1: (X. 

~)→(y， r) is ca!Ied a quotient map. 

THEOREM 2.3. In the category t? 

(1) 1: (X.~)→(Y. Y) is an extremal monomorphism zf and only zf (Y. Z!) is 

quasi-umformly isomorphic to the subspace I(X). 

(2) q: (X.~)→(Y， W) is an extremal epimoφhz"sm zf and only zf (Y, χ’') z's 

qμasz--μmformly isomorPhic to (Y. r) where r z's the quo!z"ent strμctκre 

z'nduced by q. 

This theorem shows that the extremaI monomorphisms in t? are precisely the 

embedding maps whi1e the extremal epimorphisms are the quotient maps. 

Consider the morphism 1: (X. Z!)• (Y, γ). Let Z =/(X) and W be the restriction 

of γ to I(X). Let 1: X • Z be defined by I(x) = I(x) for each x in X. Let i: Z• Y 

be the identity mpping. Then I=zf and t? has the epi-mono factorization property. 

Moreover, if we let Y be the quotient structure on I(X) then 1 is an extremal' 

epimorphism and t? thus has the extremaI epi-mono factorization property. Since 

the category t? is Iocally smalI we have by theorem 3 in [lJ that t? has the 

unique extremal epi-mono factorization property. 

THEOREM 2.4. The composzïe 01 tωo extremal epimorphisms in t? z's an extremal 

epimorphism. Thus tl has the strong μ%Z.qμe ePi-mono lactorization property. 
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PROOF. Let (X.~) f • (Y. r)---.:ε.(Z. χ’) be given where 1 and g are extremal 
epimorphisms. Let ‘9' be the supremum of aIl quasi-uniform structures on Z for 

which gl is quasi-uniformly continuous. Since gl is quasi-uniformly continuous 

with res야ct to JP’. we have that 'JP’드.9'. Now consider: 

(X.~) f • (Y.r) ε→(Z.Y) 
-------­
gl ~ 19 t 

(Z • .9') 

i denotes the identity map and is quasi-uniformly continuous since 찢드.9'. g: (Y. 

γ)→(Z • .9') is quasi-uniformly continuous since g-l(γ) is a quasi-uniform struc­

ture on Y for which 1 is quasi-uniformly continuous. This follows from the fact 
that 1 is an extremal epimorphism and γ is the strongest quasi -uniform structure 

on Y for which 1 is quasi-uniformly continuous. Since g: (Y. 'r)• (Z.W) is an 

extremal epimorphism and g=ig where i is a monomorphism. we must have that 

i: (Z • .9') .(Z, W) is an isomorphism, Thus .9'드r/’‘ and hence .9' = 'JP’. Therefore 

gl is an extremal epimorphism. 

Now since tJ has the unique extremal epi-mono factorization property and the 

composite of extremal epimorphisms is an extremal epimorphism we have that tJ 

has the strong unique extremal epi-mono factorization property. 

THEOREM 2.5. The constant morPhz'sms z'n (1 are preâsely the constant nzaps. 

The category tJ' ’ 01 nonempty quasi-μmïorm spaces, z-s constaηt generated. 

PROOF. The first statement is evident. Let (X，~) and (y, 'r) be objects in 

(1'. Since Y is nonempty, there exists an element y in Y. Define 1: X • Y by 
I(x)=y for each x in X. Thus the set of morphisms from X to Y is nonempty. 

Now let 1, g: X • Y be distinct morphisms. Then there is an element x in X 

with I(x)~g(x). Set Z={x} and k: (Z ,'1/,)• (X , '1/) defined by k(x) =x is a 

constant morphism such that Ik~gk. Hence (1' is constant generated. 

3. Coreflective subcategories 

In this section each subcategory considered is assumed to be nontrivial. A 

subcategory ~ of a categry <ø' is said to be coreflective in 'if if for each object X 

in W there exists an object X v in 'l/ and a morphism cv : X v • X , called the 

coreflective morphisms, such that for each object B in '1/ and morphism g: B• X 

there exists a unique morphism h: B• X v such that g=cvh. '1/ is called epicore­

flective if additionally each coreflective morphism is an epimorphism and it is 
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caIled mono-coreflective if each coreflective morphism is a monomorphism. 

For the convience of the reader we state the foIlowing theorems found in [1]. 

THEOREM A. If zr z's a coreflecUve sμbcategory of a constant generated category 

c?f' then zr z's both ηwno-coreflecUve and eþt"-coreflective. 

THEOREM B. If c?f' is a category whz:ch is 

(a) locally small, 

(b) has prodμcts， 

(c) has the extremal eþi-mono factorization property, 
and if zr is a subcategory of c?f' then the following statements are equivalent. 

(1) zr is mono-coreflective in C?f'. 
(2) zr is closed under the formation of coproducts and extremal quotient objects. 

THEOREM 3. 1. Let zr be a sμbcategory of tl. The following statements are 
equivalent. 

(1) zr is corζflective in tl, 
(2) zr is mono-corζflective and eþi-coreflective in tl, 
(3) zr is closed under the formation of di영oint μnions and quoUent objects. 

PROOF. (1)수추(2) Let zr be a coreflective subcategory of tl. Since we are 
considering only nontrivial subcategories we have that zr is coreflective in 

g송응zf ntl' is coreflective in tl'. Since tl' is constant generated by theorem 2.5, 
we have by theorem A that each coreflective subcategory of tl' must be both 

mono-coreflective and epi-coreflective. Hence each coreflective morphism c9/ :X9/• 

X is one-to-one and onto. 

(2)수~(3) Since tl satisfies the hypothesis for theorem B we have that a 

subcategory zf of tl is mono-coreflective if and only if (3) is satisfied, but if zr 
is mono-coreflective then it is epi-coreflective by (1) >(2). 

We now establish that for each subcategory zr of tl there exists a smallest 
coreflective subcategory .fS(zr) containing zr and moreover that the objects of 

.fS(Zf) are precisely the quotient objects of disjoint unions of members of zr. 
The foIlowing theorems are found in [1J. 

THEOREM C. If c?f' is a category which is 

(1) locally small, 

(2) has coP1'odμcts， and 

(3) has the extremal eþt"-mono factorization p1'operty 

and 21 zr is a subcategory of c?f' then there exists a smallest mono-coreflective 
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subcategory !!ð ol 'i?' contâîm-ng" fV. Furthermore. zj 'i?' has thestrong um'qμe 

extremal epi-mono lactorz'zatimi þroperty then the objects "01 ‘!9 are exactl y all 

extremal quotz'ent objects 01 coprodμcts 01 objects in fV 

Let 'i?'(fV) denote the smallest mono-coreflective subcategory in the category 'i?' 

containing the subcategory fV. 

THEOREM D. 11 'i?' is a category μ，lu'ch 

(1) is locally small. 

(2) has coproducts. 

(3) has the strong μnîque extremal eþz'-mono lactorizatz'on property. 

and zj fV z's any subcategory ol 'i?' then each monomorphism z'n 'i?' which is fV -liltable 

is also 'i?'(1/)-lzjtable. 

Using theorems C and D together with the fact that each corefIective subcategory 

in (J' is mono-coreflective we have the following theorem. 

THEOREM 3.2. Let fV be and subcategory 01 tl. Then 

(1) there exists a smallest corellectz've subategory !!ð (fV) contain쩌g fV. 

(2) objects 01 !!ð(fV) are þrecz'sely the qμotz'ent objects 01 disjoint μm'ons olobjects 

z'n 1/. 

(3) each monomoψhism z'n (J' μ，hich is fV -ltjtable is !!ð(fV)-lzjtable. 

We now consider some interesting subcategories of tl that are corefIective in (J', 

THEOREM 3.3. The category 01 umjorm spaces is a corellectz've subcategory ùz 

tl. the category 01 quasi-unzjorm spaces. 

PROOF. Let (X. fV) be a quasi-uniform space. Now (X. fVV fV- 1
) is a uniform 

space and the identity map z': (X. fVV fV- 1
) • (X. fV) is quasi-uniformly contin 

uous. Let (Y. γ) be any uniform space and 1 a morphism from (Y. γ) to (X , 

fV). Define J: (Y. r)• (X. fVV fV- 1
) by J(y)=/(y) for each y in Y. Now I=z] 

and J is unique. We must show that J: (Y. r)• (X. fVV fV- 1
) is quasi-uniformly 

continuous, It suffices to show that J-l(unu- 1)εr for each Uε1/. Let 

Uε1/. then 1-1 (U)εγ and hence J- 1(U)εγ. Since γ is a uniform structure. 

there exists a symmetric Vεγ with vcJ-1(U). Thus VζJ-l(U- 1) and 

J-\unu- 1)εγ. Hence 1 is quasi-uniformly continuous. 

THEOREM 3.4. The category olline quasz'-unilorm spaces z's corellectz've in the 

category 01 qzeasi-μnilorm spaces. 
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The proof of this theorem is natural. A quasi-uniform space (X，~) is called 

saturated if ~ is closed under arbitrary intersections. A space is saturated if and 

only if the structure ~ has a base consisting of a single set. 

THEOREM 3.5. The category 0/ saturated qμasj-μmform sþaces is core/lectz've 

ùz tl. 

PROOF. Let (X，~) be a quasi-uniform space. Set S= n {U : Uε~}. Then 

SoS=S and {S} forms a base for a saturated quasi-uniform structure .9'. Let 

i: (X, .9')→(X，~) denote the identity map, then i is quasi-uniformly continuous. 

Suppose that (y, '7') is a saturated space and /: (Y, γ)→(X，~) a morphism in 

d. Now define 1: (Y, γ)→(X，.9') by l(y)=/(y) for each y in Y. Then /=z] 

and 1 is unique. To see that 1 is quasi-uniformly continuous, note that γ is 

generated by a base {T} . Then for each U in g we have Tc=f l(U) and thus 

TC!-l(U). Therefore Tcn {j -\U) : Uε~}=l一 1(n {u : Uεg})=f-l(S). 
Hence f is quasi-uniformly continuous. 

4. Special functors 

In this section we consider two natural functors. 

THEOREM 4.1. The category 0/ tOþological sþaces is a retract 0/ the category 

d , the category 0/ qμasi-umform sþaces. 

PROOF. Let ? denote the subcategory of d of quasi-uniform spaces with the 

Pervin quasi -uniform structure. ‘;r will denote the category of topological spaces 

and continuous maps. Let T: d • .:r be the natural functor from a quasi-uniform 

space to the underlying topological space. Let P: ‘;r•‘9' be the functor that 

associates with each topological space the corresponding Pervin quasi-uniform 

space. Now ‘!? is a full subcategory of d , and the functor PT: d •‘9' is the 

identity functor on? Also TP: ‘7 •‘ ;r is the identity functor on .:r. Hence 

g , a full subcategory of d , is a retract of d and ? and ‘;r are isomorphic. 

Define R: d • d by (X，~)→(X， ~-1). If /: (X，~)→(Y， γ) is a morphism in 

d then define R(f)(x)=/(x) for each x in X. R will be called the conjugate 

functor on d. 

THEOREM 4.2. R is a /unctor on d such that RoR is the identity /zenctor on tJ. 
The fixed þoints 0/ R are þrecisely the unzform ψaces. 

-1_""", -1 PROOF. Let /: (X，~)→(Y， '7') be a morphism in d , and let V εγ . Then 
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vεr and there exists a UE'I/ with UC/- 1(V). Thus U- 1C/- 1(V -1) and 

/: (X. '1/ -1)• (Y. γ-1) is quasi-uniformly continuous. The other properties are 

easy to verify and R is indeed a functor on t7. That RoR is the identity on t7 is 

evident. Now R((X. 'I/))=(X. '1/) if and only if '1/='1/ -1. Thus the fixed points 

of R are precisely the uniform spaces. 
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