ON THE CATEGORY OF QUASI-UNIFORM SPACES

By John W. Carlson

1. Introduction

The category of topological spaces has recently attracted a great deal of attention. Herrlich and Strecker in [2] have considered coreflective subcategories in the category of topological spaces. Applying their techniques, we are able to characterize the coreflective subcategories in the category of quasi-uniform spaces. It is noted that the category of topological spaces is a retract of the category of quasi-uniform spaces and it is shown that the category of uniform spaces is coreflective in the category of quasi-uniform spaces.

DEFINITION 1.1. A quasi-uniform structure \mathcal{U} for a nonempty set X is a filter on $X \times X$ satisfying:

- (1) $\Delta = \{(x, x): x \in X\} \subset U \text{ for each } U \text{ in } \mathcal{U},$
- (2) for each U in \mathcal{U} there exists a V in \mathcal{U} with $V \circ V \subset U$.

DEFINITION 1.2. Let \mathscr{U} be a quasi-uniform structure on X. Then let $t_{\mathscr{U}} = \{O \subset X :$ if $x \in O$ then there exists U in \mathscr{U} with $x \in U[x] \subset O\}$.

It is easy to show that $t_{\mathcal{U}}$ is a topology on X. A quasi-uniform structure \mathcal{U} on X is said to be *compatible* with a topology t on X if $t=t_{\mathcal{U}}$.

In [4], Pervin showed that the collection $S = \{O \times O \cup (X - O) \times X : O \in t\}$ formed a subbase for a quasi-uniform structure for a topological space (X, t) which is compatible with t. An excellent introduction to quasi-uniform spaces may be found in [3].

2. Category of quasi-uniform spaces

Let \mathscr{Q} denote the category of quasi-uniform spaces and quasi-uniformly continuous maps. \mathscr{Q}' will denote the category of nonempty quasi-uniform spaces.

THEOREM 2.1. In the category Q,

(1) a morphism is a monomorphism if and only if it is one-to-one,

- (2) a morphism is an epimorphism if and only if it is surjective,
- (3) an isomorphism is a quasi-uniform space isomorphism,
- (4) products are the quasi-uniform space products,
- (5) coproducts are the disjoint quasi-uniform space union.

For a given set X we let $\mathcal{U}_{X \vee X} = \{X \times X\}$ and $\mathcal{U}_{A} = \{U \subset X \times X : A \subset U\}$.

THEOREM 2.2. In the category \mathcal{Q} ,

- (1) the only initial object is $(\phi, \mathcal{U}_{\phi \times \phi})$
- (2) the terminal objects are of the form ($\{a\}, \mathcal{U}_{\Delta}$),
- (3) has no zero object,
- (4) t'e injective objects are precisely quasi-uniform spaces of the form $(X, \mathcal{U}_{X \times X})$,
- (5) the projective objectives are precisely quasi-uniform spaces of the form $(X, \mathcal{U}_{\Delta})$.

Let $f: (X, \mathcal{U}) \to Y$ be surjective and set \mathcal{V} equal to the supremum of all quasi-uniform structures on Y for which f is quasi-uniformly continuous. Then $f:(X, \mathcal{U}) \to (Y, \mathcal{V})$ is called a quotient map.

THEOREM 2.3. In the category Q,

- (1) $f:(X,\mathcal{U})\to (Y,\mathcal{W})$ is an extremal monomorphism if and only if (Y,\mathcal{U}) is quasi-uniformly isomorphic to the subspace f(X).
- (2) $q:(X,\mathcal{U})\to (Y,\mathcal{W})$ is an extremal epimorphism if and only if (Y,\mathcal{W}) is quasi-uniformly isomorphic to (Y,\mathcal{V}) where \mathcal{V} is the quotient structure induced by q.

This theorem shows that the extremal monomorphisms in \mathcal{Q} are precisely the embedding maps while the extremal epimorphisms are the quotient maps.

Consider the morphism $f:(X,\mathcal{U})\to (Y,\mathcal{V})$. Let Z=f(X) and \mathcal{W} be the restriction of \mathcal{V} to f(X). Let $f:X\to Z$ be defined by f(x)=f(x) for each x in X. Let $i:Z\to Y$ be the identity mpping. Then f=if and \mathcal{Q} has the epi-mono factorization property. Moreover, if we let \mathcal{W} be the quotient structure on f(X) then f is an extremal epimorphism and \mathcal{Q} thus has the extremal epi-mono factorization property. Since the category \mathcal{Q} is locally small we have by theorem 3 in [1] that \mathcal{Q} has the unique extremal epi-mono factorization property.

THEOREM 2.4. The composite of two extremal epimorphisms in Q is an extremal epimorphism. Thus Q has the strong unique epi-mono factorization property.

PROOF. Let $(X, \mathcal{U}) \xrightarrow{f} (Y, \mathcal{V}) \xrightarrow{g} (Z, \mathcal{W})$ be given where f and g are extremal epimorphisms. Let \mathcal{S} be the supremum of all quasi-uniform structures on Z for which gf is quasi-uniformly continuous. Since gf is quasi-uniformly continuous with respect to \mathcal{W} , we have that $\mathcal{W} \leq \mathcal{S}$. Now consider:

$$(X, \mathcal{U}) \xrightarrow{f} (Y, \mathcal{V}) \xrightarrow{g} (Z, \mathcal{W})$$

$$(Z, \mathcal{S})$$

i denotes the identity map and is quasi-uniformly continuous since $\mathscr{W} \leq \mathscr{G}$. $g:(Y, \mathscr{V}) \to (Z, \mathscr{G})$ is quasi-uniformly continuous since $g^{-1}(\mathscr{V})$ is a quasi-uniform structure on Y for which f is quasi-uniformly continuous. This follows from the fact that f is an extremal epimorphism and \mathscr{V} is the strongest quasi-uniform structure on Y for which f is quasi-uniformly continuous. Since $g:(Y,\mathscr{V}) \to (Z,\mathscr{W})$ is an extremal epimorphism and g=ig where i is a monomorphism, we must have that $i:(Z,\mathscr{G}) \to (Z,\mathscr{W})$ is an isomorphism, Thus $\mathscr{G} \leq \mathscr{W}$ and hence $\mathscr{G} = \mathscr{W}$. Therefore gf is an extremal epimorphism.

Now since \mathcal{Q} has the unique extremal epi-mono factorization property and the composite of extremal epimorphisms is an extremal epimorphism we have that \mathcal{Q} has the strong unique extremal epi-mono factorization property.

THEOREM 2.5. The constant morphisms in \mathcal{Q} are precisely the constant maps. The category \mathcal{Q}' , of nonempty quasi-uniform spaces, is constant generated.

PROOF. The first statement is evident. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be objects in \mathcal{Q}' . Since Y is nonempty, there exists an element y in Y. Define $f: X \to Y$ by f(x) = y for each x in X. Thus the set of morphisms from X to Y is nonempty. Now let $f, g: X \to Y$ be distinct morphisms. Then there is an element x in X with $f(x) \neq g(x)$. Set $Z = \{x\}$ and $k: (Z, \mathcal{U}_A) \to (X, \mathcal{U})$ defined by k(x) = x is a constant morphism such that $fk \neq gk$. Hence \mathcal{Q}' is constant generated.

3. Coreflective subcategories

In this section each subcategory considered is assumed to be nontrivial. A subcategory $\mathscr U$ of a categry $\mathscr C$ is said to be coreflective in $\mathscr C$ if for each object X in $\mathscr C$ there exists an object $X_{\mathscr U}$ in $\mathscr U$ and a morphism $c_{\mathscr U}: X_{\mathscr U} {\to} X$, called the coreflective morphisms, such that for each object B in $\mathscr U$ and morphism $g: B {\to} X$ there exists a unique morphism $h: B {\to} X_{\mathscr U}$ such that $g = c_{\mathscr U} h$. $\mathscr U$ is called epicoreflective if additionally each coreflective morphism is an epimorphism and it is

called mono-coreflective if each coreflective morphism is a monomorphism.

For the convience of the reader we state the following theorems found in [1].

THEOREM A. If \mathcal{U} is a coreflective subcategory of a constant generated category \mathcal{C} then \mathcal{U} is both mono-coreflective and epi-coreflective.

THEOREM B. If & is a category which is

- (a) locally small,
- (b) has products,
- (c) has the extremal epi-mono factorization property,

and if U is a subcategory of C then the following statements are equivalent.

- (1) 2 is mono-coreflective in E.
- (2) 2\(2\) is closed under the formation of coproducts and extremal quotient objects.

THEOREM 3.1. Let \mathcal{U} be a subcategory of \mathcal{Q} . The following statements are equivalent.

- (1) W is coreflective in Q,
- (2) W is mono-coreflective and epi-coreflective in Q,
- (3) W is closed under the formation of disjoint unions and quotient objects.

PROOF. (1) \Leftrightarrow (2) Let \mathscr{U} be a coreflective subcategory of \mathscr{Q} . Since we are considering only nontrivial subcategories we have that \mathscr{U} is coreflective in $\mathscr{Q} \Leftrightarrow \mathscr{U} \cap \mathscr{Q}'$ is coreflective in \mathscr{Q}' . Since \mathscr{Q}' is constant generated by theorem 2.5, we have by theorem A that each coreflective subcategory of \mathscr{Q}' must be both mono-coreflective and epi-coreflective. Hence each coreflective morphism $c_{\mathscr{U}}: X_{\mathscr{U}} \to X$ is one-to-one and onto.

 $(2) \Leftrightarrow (3)$ Since \mathcal{Q} satisfies the hypothesis for theorem B we have that a subcategory \mathcal{U} of \mathcal{Q} is mono-coreflective if and only if (3) is satisfied, but if \mathcal{U} is mono-coreflective then it is epi-coreflective by $(1) \Longrightarrow (2)$.

We now establish that for each subcategory \mathcal{U} of \mathcal{Q} there exists a smallest coreflective subcategory $\mathcal{B}(\mathcal{U})$ containing \mathcal{U} and moreover that the objects of $\mathcal{B}(\mathcal{U})$ are precisely the quotient objects of disjoint unions of members of \mathcal{U} . The following theorems are found in [1].

THEOREM C. If & is a category which is

- (1) locally small,
- (2) has coproducts, and
- (3) has the extremal epi-mono factorization property and if U is a subcategory of U then there exists a smallest mono-coreflective

subcategory \mathcal{Z} of \mathcal{C} containing \mathcal{U} . Furthermore, if \mathcal{C} has the strong unique extremal epi-mono factorization property then the objects of \mathcal{Z} are exactly all extremal quotient objects of coproducts of objects in \mathcal{U}

Let $\mathscr{C}(\mathscr{U})$ denote the smallest mono-coreflective subcategory in the category \mathscr{C} containing the subcategory \mathscr{U} .

THEOREM D. If & is a category which

- (1) is locally small,
- (2) has coproducts,
- (3) has the strong unique extremal epi-mono factorization property, and if U is any subcategory of U then each monomorphism in U which is U-liftable is also U-liftable.

Using theorems C and D together with the fact that each coreflective subcategory in \mathcal{Q} is mono-coreflective we have the following theorem.

THEOREM 3.2. Let \(\mathcal{U} \) be and subcategory of \(\mathcal{Q} \). Then

- (1) there exists a smallest coreflective subategory $\mathcal{B}(\mathcal{U})$ containing \mathcal{U} ,
- (2) objects of $\mathcal{B}(\mathcal{U})$ are precisely the quotient objects of disjoint unions of objects in \mathcal{U} ,
- (3) each monomorphism in \mathcal{Q} which is \mathcal{U} -liftable is $\mathcal{B}(\mathcal{U})$ -liftable.

We now consider some interesting subcategories of \mathcal{Q} that are coreflective in \mathcal{Q} .

THEOREM 3.3. The category of uniform spaces is a coreflective subcategory in Q, the category of quasi-uniform spaces.

PROOF. Let (X, \mathscr{U}) be a quasi-uniform space. Now $(X, \mathscr{U} \vee \mathscr{U}^{-1})$ is a uniform space and the identity map $i: (X, \mathscr{U} \vee \mathscr{U}^{-1}) \to (X, \mathscr{U})$ is quasi-uniformly continuous. Let (Y, \mathscr{V}) be any uniform space and f a morphism from (Y, \mathscr{V}) to (X, \mathscr{U}) . Define $\tilde{f}: (Y, \mathscr{V}) \to (X, \mathscr{U} \vee \mathscr{U}^{-1})$ by $\tilde{f}(y) = f(y)$ for each y in Y. Now $f = i\tilde{f}$ and \tilde{f} is unique. We must show that $\tilde{f}: (Y, \mathscr{V}) \to (X, \mathscr{U} \vee \mathscr{U}^{-1})$ is quasi-uniformly continuous. It suffices to show that $\tilde{f}^{-1}(U \cap U^{-1}) \in \mathscr{V}$ for each $U \in \mathscr{U}$. Let $U \in \mathscr{U}$, then $f^{-1}(U) \in \mathscr{V}$ and hence $\tilde{f}^{-1}(U) \in \mathscr{V}$. Since \mathscr{V} is a uniform structure, there exists a symmetric $V \in \mathscr{V}$ with $V \subset \tilde{f}^{-1}(U)$. Thus $V \subset \tilde{f}^{-1}(U^{-1})$ and $\tilde{f}^{-1}(U \cap U^{-1}) \in \mathscr{V}$. Hence f is quasi-uniformly continuous.

THEOREM 3.4. The category of fine quasi-uniform spaces is coreflective in the category of quasi-uniform spaces.

The proof of this theorem is natural. A quasi-uniform space (X, \mathcal{U}) is called saturated if \mathcal{U} is closed under arbitrary intersections. A space is saturated if and only if the structure \mathcal{U} has a base consisting of a single set.

THEOREM 3.5. The category of saturated quasi-uniform spaces is coreflective in \mathcal{Q} .

PROOF. Let (X, \mathcal{U}) be a quasi-uniform space. Set $S = \bigcap \{U : U \in \mathcal{U}\}$. Then $S \circ S = S$ and $\{S\}$ forms a base for a saturated quasi-uniform structure \mathscr{S} . Let $i:(X, \mathscr{S}) \to (X, \mathscr{U})$ denote the identity map, then i is quasi-uniformly continuous. Suppose that (Y, \mathscr{V}) is a saturated space and $f:(Y, \mathscr{V}) \to (X, \mathscr{U})$ a morphism in \mathscr{Q} . Now define $\tilde{f}:(Y, \mathscr{V}) \to (X, \mathscr{S})$ by $\tilde{f}(y) = f(y)$ for each y in Y. Then $f = i\tilde{f}$ and \tilde{f} is unique. To see that \tilde{f} is quasi-uniformly continuous, note that \mathscr{V} is generated by a base $\{T\}$. Then for each U in \mathscr{U} we have $T \subset f^{-1}(U)$ and thus $T \subset \tilde{f}^{-1}(U)$. Therefore $T \subset \bigcap \{\tilde{f}^{-1}(U) : U \in \mathscr{U}\} = \tilde{f}^{-1}(\bigcap \{U : U \in \mathscr{U}\}) = f^{-1}(S)$. Hence \tilde{f} is quasi-uniformly continuous.

4. Special functors

In this section we consider two natural functors.

THEOREM 4.1. The category of topological spaces is a retract of the category \mathcal{Q} , the category of quasi-uniform spaces.

PROOF. Let \mathscr{F} denote the subcategory of \mathscr{Q} of quasi-uniform spaces with the Pervin quasi-uniform structure. \mathscr{F} will denote the category of topological spaces and continuous maps. Let $T: \mathscr{Q} \rightarrow \mathscr{F}$ be the natural functor from a quasi-uniform space to the underlying topological space. Let $P: \mathscr{F} \rightarrow \mathscr{F}$ be the functor that associates with each topological space the corresponding Pervin quasi-uniform space. Now \mathscr{F} is a full subcategory of \mathscr{Q} , and the functor $PT: \mathscr{Q} \rightarrow \mathscr{F}$ is the identity functor on \mathscr{F} . Also $TP: \mathscr{F} \rightarrow \mathscr{F}$ is the identity functor on \mathscr{F} . Hence \mathscr{F} , a full subcategory of \mathscr{Q} , is a retract of \mathscr{Q} and \mathscr{F} and \mathscr{F} are isomorphic.

Define $R: \mathcal{Q} \to \mathcal{Q}$ by $(X, \mathcal{U}) \to (X, \mathcal{U}^{-1})$. If $f:(X, \mathcal{U}) \to (Y, \mathcal{V})$ is a morphism in \mathcal{Q} then define R(f)(x) = f(x) for each x in X. R will be called the conjugate functor on \mathcal{Q} .

THEOREM 4.2. R is a functor on \mathcal{Q} such that $R \circ R$ is the identity functor on \mathcal{Q} . The fixed points of R are precisely the uniform spaces.

PROOF. Let $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ be a morphism in \mathcal{Q} , and let $V^{-1}\in \mathcal{V}^{-1}$. Then

 $V \in \mathscr{V}$ and there exists a $U \in \mathscr{U}$ with $U \subset f^{-1}(V)$. Thus $U^{-1} \subset f^{-1}(V^{-1})$ and $f: (X, \mathscr{U}^{-1}) \to (Y, \mathscr{V}^{-1})$ is quasi-uniformly continuous. The other properties are easy to verify and R is indeed a functor on \mathscr{Q} . That $R \circ R$ is the identity on \mathscr{Q} is evident. Now $R((X, \mathscr{U})) = (X, \mathscr{U})$ if and only if $\mathscr{U} = \mathscr{U}^{-1}$. Thus the fixed points of R are precisely the uniform spaces.

Kansas State Teachers College Emporia, Kansas 66801

REFERENCES

- [1] H. Herrlich and G.E. Strecker, Coreflective subcategories, Trans. Amer. Math. Soc. 157 (1971), 205-226.
- [2] H. Herrlich and G.E. Strecker, Coreflective subcategories in general topology, Fund. Math. 73 (1972), 199-218.
- [3] M.C. Murdeshwar and S.A. Naimpally, Quasi-Uniform Topological Spaces, Noordhoff, 1966.
- [4] W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316-317.