RIGHT GENERALIZED ω-L-UNIPOTENT BISIMPLE SEMIGROUPS

By Irene Loomis and R.J. Warne

Let S be a regular bisimple semigroup such that the union T of the maximal subgroups of S is an ω -chain of rectangular groups $(T_n: n \in \mathbb{N})$, the non-negative integers). Also, suppose that $e, f \in E(T)$, the set of idempotents of T, and ef = e imply gegfe = ge for all $g \in E(T)$ and \mathscr{R} , Green's relation, is a right congruence on T. We term S a right generalized ω - \mathscr{L} -unipotent bisimple semigroup. We characterize such S. Let (I, \circ) be an ω -chain of left zero semigroups $(I_n: n \in \mathbb{N})$ and let (I, \otimes) be an ω -chain of right groups $(I_n: n \in \mathbb{N})$. Suppose $I_n \cap I_n = \{e_n\}$, a single idempotent element. Let $(n, k) \to \alpha_{(n, k)}$ be a homomorphism of C, the bicyclic semigroup, into $\operatorname{End}(I, \circ)$, the semigroup of endomorphism of (I, \circ) (iteration), and let $(n, k) \to \beta_{(n, k)}$ be a homomorphism of C into $\operatorname{End}(I, \otimes)$ such that 1. $g\beta_{(s,s)} = g \otimes e_s$ for all $g \in I$; 2. $I_r\alpha_{(n,k)} \subset I_{r+k-\min(r,n)}$ and $I_r\beta_{(n,k)} \subset I_{r+k-\min(r,n)}$. Let (I, I, α, β) denote $I \times I$ under the product: if $i \in I_n$, $i \in I_k$, $u \in I_r$, and $v \in I_s$, 3. $(i, j)(u, v) = (i \circ u\alpha_{(k, n)}, j\beta_{(r, s)} \otimes v)$. We show (theorem 2. 12) that (I, I, α, β) is a right generalized ω - $\mathscr L$ unipotent bisimple semigroup and, conversely, every such semigroup is isomorphic to some (I, I, α, β) .

We use the definitions of Clifford and Preston [1] and of [3, p. 102] unless otherwise specified. Particularly, a semigroup S is termed regular if $a \in aSa$ for all $a \in S$. \mathscr{R} , \mathscr{L} , and \mathscr{D} will denote Green's equivalence relations on a semigroup S, i.e., $(a, b) \in \mathscr{R}$ if $a \cup aS = b \cup bS$; $(a, b) \in \mathscr{L}$ if $a \cup Sa = b \cup Sb$; $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$; and $\mathscr{D} = \mathscr{R} \circ \mathscr{L}((a, b) \in \mathscr{D})$ if there exists $x \in S$ such that $(a, x) \in \mathscr{R}$ and $(x, b) \in (\mathscr{L})$. Let R_a denote the \mathscr{R} -class containing a. A semigroup which contains a single \mathscr{D} class is termed bisimple. A rectangular band is the algebraic direct product of a left zero semigroup $U(x, y \in U;$ implies xy = x) and a right zero semigroup. A rectangular group is the algebraic direct product of a group and a rectangular band. A semigroup S which is the union of a collection of pairwise disjoint subsemigroups $(S_n: n \in N)$ such that $S_n S_m \subset S_{\max(n,m)}$ is called an ω -chain of the semigroups $(S_n: n \in N)$. A semigroup X is called a right group if $a, b \in X$

implies there exists a unique $x \in X$ such that ax = b. The bicyclic semigroup is $C = N \times N$ under the product $(m, n)(p, q) = (m + p - \min(n, p), n + q - \min(n, p))$. If V is a subset of a semigroup S, E(V) will denote the set of idempotents of V.

In [2], a regular semigroup S was termed generalized \mathcal{L} -unipotent if $e, f \in E(S)$ and ef = e imply gegfe = ge for all $g \in E(S)$.

Let S be a regular bisimple semigroup such that the union T of the maximal subgroups of S is an ω -chain of rectangular groups $(T_n: n \in N)$. Using [2, lemma 1], S is right generalized ω - \mathscr{L} -unipotent if and only if \mathscr{R} is a right congruence on T, E(T) is an ω -chain of rectangular bands $(E(T_n): n \in N)$ and \mathscr{L} is a left congruence on E(T). We let $E_n = E(T_n)$.

Using results of [3, section 1], our terminology here is in accordance with that of [3].

1. Structure theorem for right generalized ω - \mathcal{L} -unipotent bisimple semigroups (proof of converse)

In this section, S will denote a right generalized ω - \mathcal{L} -unipotent bisimple semigroup.

As in [3, notes 1.7 and 1.8], let e_0 be a fixed element of E_0 . Let $f \in E_1$ and $e_1 = e_0 f e_0$. Select and fix $a \in R_{e_0} \cap L_{e_1}$. By the proof of [1, theorem 2.18] there exists a unique inverse a^{-1} (i.e. $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$) of a contained in $R_{e_1} \cap L_{e_0}$ with $aa^{-1} = e_0$ and $a^{-1}a = e_1$. Define $a^{-n} = (a^{-1})^n$ for all positive integers n and define $a^0 = e_0$. Let $e_k = a^{-k}a^k$. By [3, note 1.3 and lemma 1.11], $e_k \in E_k$ for each $k \in N$ and $e_k e_n = e_{\max(n,k)}$.

As in [3, paragraph following lemma 1.11], let $J_k(I_k)$ denote the \mathscr{R} -class (the set of idempotents of the \mathscr{L} -class) of T containing e_k (note, the T's (and T_k 's) of [3] are identical to those of this paper by using [3, note 1.3 and proposition 1.4]). Let $I = \bigcup (I_n : n \in \mathbb{N})$ and $J = \bigcup (J_n : n \in \mathbb{N})$. By [3, lemma 1.13], J_n is a right group for each $n \in \mathbb{N}$.

LEMMA 1.1. [3, lemma 1.12] I is an ω -chain of left zero semigroups $(I_n: n \in N)$.

LEMMA 1.2. J is an ω -chain of right groups $(J_n: n \in N)$.

PROOF. Let $x \in I_n$ and $y \in I_m$. Hence, $x \mathcal{R} e_n (\in T)$ and $y \mathcal{R} e_m$. Since \mathcal{R} is a congruence on T, $xy \mathcal{R} e_n e_m = e_{\max(n,m)}$. Hence $xy \in I_{\max(n,m)}$.

REMARK. Lemma 1.2 may also be obtained from [3, lemma 1.21].

If X is a set, T_X will denote the semigroup (iteration) of mappings of X into X.

LEMMA 1.3. [3, lemma 1.15] There exists a mapping $j \to A_j$ of J into T_I and a mapping $p \to B_p$ of I into T_J such that $I_n A_j \subset I_{\max(n,m)}$ for $j \in J_m$ and $J_n B_p \subset J_{\max(n,m)}$ for $p \in I_m$. If $j \in J$ and $p \in I$, $jp = pA_j jB_p$. Furthermore, $jp \mathcal{R} pA_j \in T$ and $jp \mathcal{L} jB_p \in T$.

LEMMA 1.4. $iA_i = e_s i$ for $j \in J_s$ and $i \in I$.

PROOF. First we show that $A_j = A_{e_i}$ for $j \in J_S$. Since \mathscr{R} is a right congruence relation on T, $(j,e_s) \in \mathscr{R}$ implies $(ji,e_si) \in \mathscr{R}$ for all $i \in I$. Hence, using lemma 1.3, $(iA_j,iA_{e_i}) \in \mathscr{R}$ for all $i \in I$. Thus, using lemma 1.3, $iA_j = iA_{e_i}$ for all $i \in I$. Let $i \in I_r$, say. Then, since $e_si \in I_{\max(s,r)}$ by lemma 1.1, we utilize lemma 1.3 to obtain $(e_si)e_{\max(s,r)} = e_si = iA_{e_i}e_sB_i$. Therefore, by lemma 1.3 and [3, lemma.14], $iA_{e_i} = e_si$.

DEFINITION. If $u \in T$ and $n, k \in N$, define $u\nu_{(k,n)} = a^{-n}a^kua^{-k}a^n$. Let $\nu_{(k,n)} \mid I = \alpha_{(k,n)}$ and $\nu_{(k,n)} \mid J = \beta_{(k,n)}$.

LEMMA 1.5. [3, lemma 2.6].

a)
$$I_r \alpha_{(k,n)} \subset I_{r+n-\min(r,k)}$$
, b) $J_r \beta_{(k,n)} \subset J_{r+n-\min(r,k)}$.

LEMMA 1.6. [3, lemma 2.9] $(k,n) \rightarrow \alpha_{(k,n)}$ is a homomorphism of C into End I. LEMMA 1.7. $\beta_{(k,n)} \in \text{End } J$ for all $n,k \in \mathbb{N}$.

PROOF. By lemma 1.5(b), $\beta_{(k,n)} \in T_J$. Let $g \in J_r$ and $h \in J_s$. Using lemma 1.2, $e_k h e_k = e_k e_{\max(k,s)} (h e_k) = e_{\max(k,s)} h e_k = h e_k$. Hence, using [3, lemmas 1.1 and 1.9],

$$g\beta_{(k,n)}h\beta_{(k,n)} = (a^{-n}a^{k}ga^{-k}a^{n})(a^{-n}a^{k}ha^{-k}a^{n})$$

$$= a^{-n}a^{k}ga^{-k}a^{k}ha^{-k}(a^{k}a^{-k}a^{n})$$

$$= a^{-n}a^{k}ga^{-k}a^{k}(ha^{-k}a^{k})a^{-k}a^{n}$$

$$= a^{-n}a^{k}gha^{-k}a^{n}$$

$$= (gh)\beta_{(k,n)}.$$

REMARK. Lemma 1.7 could also be obtained from [3, lemma 2.15].

LEMMA 1.8. $(k,n) \rightarrow \beta_{(k,n)}$ is a homomorphism of C into End J.

PROOF. Combine lemma 1.7 and [3, lemma 2.12].

LEMMA 1.9. Let $\nu \in \text{End } I$ such that $e_k \nu \in I_n$. Then if $i \in I_n$, $j \in I_k$, and $u \in I$, $i(uA_i \nu) = i(u\nu)$.

PROOF. Apply lemma 1.4.

If $a,b \in I$, define $a \circ b = ab$. If $a,b \in J$, define $a \otimes b = ab$.

LEMMA 1.10. $S\cong((i,(n,k),j): i\in I_n, j\in J_k, n, k\in N)$ under the multiplication $(i,(n,k),j)(u,(r,s),v)=(i\circ(u\alpha_{(k,n)}),n+r-\min(k,r),k+s-\min(k,r),j\beta_{(r,s)}\otimes v).$

PROOF. Use [3, lemma 2.17], definition of "o", lemma 1.5(a), lemma 1.9, lemma 1.5(b), [3, lemma 1.20], and definition of " \otimes ".

LEMMA 1.11. $S \cong I \otimes J$ under the product: if $i \in J_n$, $j \in J_k$, $u \in I_r$, and $v \in J_s$, $(i,j)(u,v) = (i \circ u\alpha_{(k,n)}, j\beta_{(r,s)} \otimes v)$.

PROOF. If $i \in I_n$ and $j \in J_k$, $(i, (n, k)j)\phi = (i, j)$ defines an isomorphism of the groupoid given in the statement of lemma 1.10 onto the groupoid given in the statement of lemma 1.11.

LEMMA 1.12. $g\beta_{(s,s)} = g \otimes e_s$.

PROOF. As in the proof of lemma 1.7, $e_s g e_s = g e_s$. Hence, using the definition of \otimes , $g \beta_{(s,s)} = e_s g e_s = g \otimes e_s$.

REMARK. Lemma 1.12 could also be obtained from [3, lemma 2.19].

THEOREM 1.13. Let S be a right generalized ω -L-unipotent bisimple semigroup. Then S is isomorphic to some (I, J, α, B) .

PROOF. The theorem is a direct consequence of lemmas 1.1, 1.2, 1.5, 1.6, 1.8, 1.11, and 1.12.

2. Structure theorem for right generalized ω - \mathcal{L} -unipotent bisimple semigroups (proof of the direct part)

In this section, we show that (I, J, α, β) is a right generalized ω - \mathcal{L} -unipotent bisimple semigroup (theorem 2.10).

LEMMA 2.1. (I, J, α, β) is a semigroup.

PROOF. Closure follows from the fact that I and J are ω -chains and (2). Let $a=(i\ j), b=(u,v)$, and c=(w,z), where $i\in I_n$, $j\in J_k$, $u\in I_r$, $v\in J_s$, $w\in I_p$, and $z\in J_q$.

Let $a_1=i$ and $a_2=j$. Utilizing the fact that $(n,k)\to\alpha_{(n,k)}$ is a homomorphism of C into $\operatorname{End}(I,\circ)$,

$$((ab)c)_{1} = ((i \circ u\alpha_{(k,n)}) \circ w\alpha_{(s,r)(k,n)})$$

$$= (i \circ u\alpha_{(k,n)}) \circ w\alpha_{(s,r)}\alpha_{(k,n)}$$

$$= i \circ ((u \circ (w\alpha_{(s,r)}))\alpha_{(k,n)})$$

$$= (a(bc))_{1}.$$

Similarly, using the fact that $(n,k) \rightarrow \beta_{(n,k)}$ is a homomorphism of C into End $(J,\otimes),((ab)c)_2=(a(bc))_2$. Hence, (ab)c=a(bc).

LEMMA 2.2. Let $(i,j), (u,v) \in (I,J,\alpha,\beta)$. Let $i \in I_n$, $j \in J_k$, $u \in I_r$, and $v \in J_s$. Then (a) $(i,j) \mathcal{R}(u,v)$ if and only if i=u; and (b) $(i,j) \mathcal{L}(u,v)$ if and only if k=s and $(j,v) \in \mathcal{R}(\in J_k)$.

PROOF. (a) Let $(i,j)\mathcal{R}(u,v)$. Then, using (3), there exists $x,y \in I$ such that $i=u \circ x$ and $u=i \circ y$. Hence, $u \circ u=u \circ (u \circ x)=u \circ x=i$, and similarly $i \circ u=u$. Therefore, i=u. Conversely, let i=u. Since $j\beta_{(k,s)} \in J_s$, by (2), and J_s is a right group, there exists $b \in J_s$ such that $j\beta_{(k,s)} \otimes b=v$. Let $a \in I_k$. Therefore, using (2), u(i,j) u(i,j) u(i,j). Similarly, there exists u(i,j) u(i,j)

(b) Suppose k=s and $(j,v)\in\mathscr{H}(\in J_k)$. Then, there exists $x\in H_k$ (the \mathscr{H} -class of J_k containing e_k such that $x\otimes j=v$. Let $b=x\beta_{(k,n)}\in J_n$. Hence, using the fact $(n,k)\to\beta_{(n,k)}$ is a homomorphism and (1), $b\beta_{(n,k)}=x\beta_{(k,n)}\beta_{(n,k)}=x\beta_{(k,k)}=x\otimes e_k=x$. Hence, (u,b)(i,j)=(u,v). Similarly, there exists $c\in I_r$ such that (i,c)(u,v)=(i,j). Conversely, suppose that $(i,j)\mathscr{L}(u,v)$. Thus there exists $x\in J_p$ with $p\geq k$ and $y\in J_q$ with $q\geq s$ such that $x\otimes j=v$ and $y\otimes v=j$. Therefore, p=s and q=k. Thus, s=k. Thus, s=k. Thus, s=k. Thus, s=k. Hence, since s=k is a right group, s=k.

LEMMA 2.3. (I,J,α,β) is a bisimple semigroup.

PROOF. Let $(i,j), (u,v) \in (I,J,\alpha,\beta)$. Then, using lemma 2.2, $(i,j) \mathcal{R}(i,v)$ $\mathcal{L}(u,v)$.

LEMMA 2.4. $E(I,J,\alpha,\beta) = \{(i,j): i \in I_n, j \in E(J_n), n \in N\}.$

PROOF. Let $(i,j) \in E(I,J,\alpha,\beta)$ and suppose $i \in I_n$ and $j \in I_k$. Using (3) and (2), n=k and $j\beta_{(n,k)} \otimes j=j$. Hence, using (1), $j=j\beta_{(k,k)} \otimes j=j\otimes e_k \otimes j=j\otimes j$, and,

thus, $j \in E(J_n)$. Conversely, let $i \in I_n$ and $j \in E(J_n)$. Thus, using (3), (2) and (1), $(i,j) \in E(I,J,\alpha,\beta)$.

LEMMA 2.5. (I, J, α, β) is a regular bisimple semigroup.

PROOF. Using lemma 2.4, $(i,e_n) \in E(I,J,\alpha,\beta)$. Hence, by a result of Clifford and Miller [1, theorem 2.11], and lemma 2.3, (I,J,α,β) is a regular bisimple semigroup.

LEMMA 2.6. Let $T_n = \{(i,j) : i \in I_n \text{ and } j \in J\}$ and let $T = \bigcup (T_n : n \in N)$. Then, T is an ω -chain of the rectangular groups $(T_n : n \in N)$.

PROOF. Let (i,j), $(u,v) \in T_n$. Using (1), $(i,j)(u,v) = (i,j \otimes v)$. Hence, using [1, theorem 1.27], T_n is a rectangular group. The last statement of the lemma is a consequence of (3) and (2).

LEMMA 2.7. $E(T_n) = \{(i,j): i \in I_n, j \in E(I_n)\}$. E(T) is an ω -chain of the rectangular bands $(E(T_n): nN)$.

PROOF. The first statement of the lemma is an immediate consequence of lemmas 2.6 and 2.4. Let $(i,j), (u,v) \in E(T_n)$. Hence, (i,j)(u,v) = (i,v). Thus, $E(T_n)$ is a rectangular band. Let $(i,j) \in E(T_n)$ and $(u,v) \in E(T_k)$. Using (3), (2), (1) and the fact that E(J) is a semigroup, $(i,j)(u,v) \in E(T_{\max(n,k)})$. Therefore, E(T) is an ω -chain of the rectangular bands $(E(T_n): n \in N)$.

LEMMA 2.8. T is the union of the maximal subgroups of (I, J, α, β) .

PROOF. Let X denote the union of the maximal subgroups of (I, J, α, β) . Let $x \in X$. Hence, using lemmas 2.2 and 2.4, $x \mathcal{H}(i,j)$ for some $i \in I_n$ and $j \in E(J_n)$, say. Thus $x \in T_n$ by lemma 2.6. Let $x \in T$. Hence, since any rectangular group is a union of its subgroups, $x \in X$.

LEMMA 2.9. \mathcal{L} is a left congruence on E(T).

PROOF. Let X be any semigroup such that E(X) is a semigroup and let $e, f \in E(X)$. Then, $(e, f) \in \mathcal{L}(\subseteq X)$ if and only if $(e, f) \in \mathcal{L}(\subseteq E(X))$. Let $(i, j), (u, v) \in E(I, J, \alpha, \beta)$. Thus, using lemma 2.4 and 2.2(b), $(i, j)\mathcal{L}(u, v)$ if and only if j = v. Hence, using (3), \mathcal{L} is a left congruence on E(T).

LEMMA 2.10. \mathcal{R} is a right congruence on T.

PROOF. Using lemma 2.2 (a) and the multiplication on T_n given in the proof of lemma 2.6, $(i,j)\mathcal{R}(u,v)(\subseteq T)$ if and only if i=u. Hence, using (3), \mathcal{R} is a right congruence on T.

REMARK. Lemmas 2.2—2.5, 2.7, and 2.9 may also be obtained from the corresponging results of [3].

THEOREM 2.11. (I,J,α,β) is a right generalized ω -L-unipotent bisimple semigroup.

PROOF. Combine lemmas 2.5—2.10.

THEOREM 2.12. (I,J,α,β) is a right generalized ω -L-unipotent bisimple semigroup, and conversely every such semigroup is isomorphic to some (I,J,α,β) .

PROOF. Combine theorems 2.11 and 1.13.

University of Alabama in Birmingham Birmingham, Alabama 35294

REFERENCES

- [1] A. H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, Math. Surveys, No. 7, Vol. 1, Amer. Math. Soc., Providence, R. I., 1961.
- [2] R. J. Warne, Generalized L-unipotent semigroups, Bulletino della Unione Mathematica Italiano, 5(1972), 43-47.
- [3] R. J. Warne, Generalized ω -L-unipotent bisimple semigroups, Pacific J. Math., 50 (1974), 102-118.