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THE EXTENDED SUM OF TWO RADICAL CLASSES

By R.E. Propes and A.M. Zaid;

In [6] Yu-Lee Lee and R.E. Propes defined the sum o+.% of two radical
classes oz and & in a universal class W of associative rings as follows:

oo+ F = {REW:0t(R)+F(R)=R).

They also found the necessary and sufficient conditions for this sum to be a
radical class. The purpose of this paper i1s to extend this sum and to find
conditions for which this extended sum will be a radical class.

We shall employ the following terms and notation throughout this paper:

W: a universal class of associative rings, i.e., a class of rings homomorphically
closed and containing all ideals of all rings in W.

If oz is a class of rings then any ring in ¢ is called an &-7ing.
If I<R (i.e., I is an ideal of a ring R&W ) then [ is called an oz-idea! of R.

If REW has an oz-ideal which contains all ¢z-ideals of R, it is called the oz-
radical of R, denoted by cz(R).

A ring REW is o¢-semisimple if R has no nonzero ¢¢-ideals. The class of all
Oz-SemiSimp]e rings will be denoted by S(oz).
Recall [1] that a subclass ¢ of a universal class W of rings i1s called a redical
class if and only if the following conditions are satisfied:
(a) o¢ is homomorphically closed,
(b) each ring REW has an oz-radical oz(R),
and (c¢) if REW then R/cz(R)ES(co2).

DEFINITION. Let oz and & be two radical classes in W. For each REW we set
(P Z)H(R)=>T where I<R and I/((R)+F(RY)exlJF.

'DEFINITION. @ F ={R&W: (xDB)(R)=R]}.

NOTE. o+ ZFCorPF and S(oe+ F H)C{ReW . (D F ))(R)=0}. (Recall [6] that
S+ F)=S(a)NS(FH ). )

PROPOSITION 1. Tke class ce@PF is homomorphically closed.
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PROOF. Let Recx®F and R/J be a homomorphic image of R. Now R=>1,
where I<R and I/(a¢(R)+Z(R))€xUHF. Thus R/J=CI1)/]. Let oc(R/])=

K/] and F(R/])=L/]. ax(R/])+F(R/])=K/J+L/]=(K+L)/]. (R/])/ce(R/])
=(R/])/(K/])=R/K &S(¢¢) and (R/J)/FR/])=R/])/(L/[)=R/LES(Z).
Thus #Z(R)CK and Z(R)CL and hence 2(R)+ Z(R)CK+L. (R/])/((R/])+
FB(RI))=R/])/I(K+L)/])=R/(K+L)=C1)/(K+L). R/((R)+Z(R)) can
be mapped homomorphically onto (321)/(K+L). By definition I/(cZ2(R)+ % (R))
cooUZ. But I/(2(R)+F(R)) can be mapped homomorphically onto I/(IN(K

+L)={I+K+L)/(K+L). Therefore (/+K+L)/(K+L)caxUZ. But E{(I+K
+L)/(K+L)=((,TT.I)+K+L)/(K—I—'L):R/(K+L). By definition, (D% )(R/])
=>(P/]), where P<R and P/(K+L)eoxU%. Now (I+K+L)/] <R/] and
(I+K+L)/(K+ L))o U . Thus ZI (I+K+L)/JC(aDF )(R/]). But E[ ([+K
—I—L)/]:((ZI] D+K+L)/J=R/].

Hence (@ Z)(R/])=R/] i.e., R/JEXDZ.
PROPOSITION 2. (#@ZF)H)(R) ts an (tDF )-ideal of the ring R.

PROOF. Set P=(ox@ % )(R). Since x(R)+ Z(R)CP, we have az(R)CP and
Z(R)CP. But P<Rsothat #(R)=oz(P) and F(R)=F(P). Let I<R such that
I/(cz(R))+F(R)Ex\JZ. Then by definition ICP. Moreover, I/ ((R) +F
(R)=1I/(x(P)+F(P))<P/(oe(P)+HF(P)). Then, by definition, IC(zDZ)
(P). Thus (+%)(R)C(oz+F)(P), and hence (P F)(P)=(xPZ )(R)=P.

PROPOSITION 3. Let REW. Then (e PF )(R) is the largest (0D F )-ideal of R.

PROOF. Let I<R andlet I&ax®%. Then I=(PZF)(I)=2"], where J<I and
J/(oe( D)+ FI))esoe\ U Z . Without loss of generality assume J/(oe(I)+ ZF (1)) =cx.
Then [J/(ae(I)+FT))Col/(ce(I)+FT)). But I/(ce(D+ZFT)H)<<R/(oe(])
+ Z(I)) and ¢z is a radical class. Thus, by Theorem 1 [2], a2({/(cx(I)+ F (1))
<R/(t(D+ZF(I)). Set ax(l/((I)+F(D)))=K/(oe([)+F(I)). Then KR
and JCK. Since K/(a(I)+F (1)) is in ¢ and can be mapped homomorphically
onto K/(KN((R)+F(R)))=(K+(R)+Z(R)/ (ce(R)+F(R)), we have (K
+(R)+ F(R))/((R)+ F(R))EaCaUZ. Hence K-+-a2(R)+ZF(R)C(vDHF )
(R). Therefore I=>2JC(x®F)(R).

THEOREM 1. Let oz and & be radical classes in a universal class W of rings.
If S(ot)CF or S(F)Co2, then oL is a radical class.

PROOF. It suffices to show that R/(ax®@Z)(R)E&S(cz+F). By definition,
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(DD Y R/DD ))(R))=21/(0cDF)(R) where I<R and I/(J+K)&xUF
where J/(0eDZ )(R)=(R/(0eDF)(R)) and K/ (ot F )(R)=FL(R/(cDZF)(R)).
Without loss of generality, assume that S(xz)CZ. Now, [/ce(R))/((c2(R)
+ B (R))/(R)EZH, because I[/2(R)ES(2)CH%. Since I/(2(R)+F(R))=x
(I/ce(R))/((e(R)+-F(R))/ce(R)) we have [/(2(R)+F(R)EFCxUZ.
Hence IC(axPZ)(R), i.e., (P F )R/ (xDF)(R)=0. Therefore R/(0tDZF)
(R) is (x@Z )-semisimple.

EXAMPLE 1. Let M be the class of fields of two elements. UM denotes the
upper radical determined by M. By [3], every UM-semisimple ring is a subdirect
sum of M-rings. Moreover, subdirect sums of fields of two elements are Boolean
rings (7). Hence R&S(UM) which implies that R is a Boolean ring.

Let # be the class of all regular rings [R is a regular ring if for each ¢&ER,

there exists an element x&R such that exe—=a]. As proved in [5]), % is a radical
class. Moreover, every Boolean ring is regular. Therefore, all Boolean rings are
contained in %#. Hence UM and .# are two radical classes such that S(UM)C.%#

and so satisfy the condition of the theorem.

THEOREM 2. Let ¢z and F be two radical classes in W such that S(ox)C Y,
S(Z)H)Cor and o2\ F =0. Then W=0tD% =2+ % .

PROOF. Let REW. Each of R/cz(R) and R/%(R) can be mapped homomor-
phically onto R/((R)+F(R)). Now R/c2(R)ES(x)C% and R/ ¥ (R)ES(F)
Co¢. Therefore, R/(o2(R)+Z(R))Ex% =0. Hence R=0z(R)+F(R) and so
REW implies Reoz+.%. Hence W=+ %. But we have already noticed that
o+ FCoPDF. Hence 2+ B =0t F =W,

EXAMPLE 2. Let W be the universal class of rings whose additive groups are

p-primary for some prime p. Let » be a prime and set sz {REW: (R, +) is

p-primary}. Then Tp is a radical class [4]. Let Q=U 7. We claim that Q is a
g7=p

radical class, in fact Q=U (Tp), upper radical class determined by Tp where
UTP-——{REW: R/I%TP VIZ=R}.

Now REUTP if and only if R=R/(0)ET . for some g#p 1f and only if REQ.
Moreover, STPCQ, SQCT, and T,NQ=0. Hence Wsz(—BQ:TP%—Q.
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