THE EXTENDED SUM OF TWO RADICAL CLASSES

By R.E. Propes and A.M. Zaidi

In [6] Yu-Lee Lee and R.E. Propes defined the sum $\mathcal{O}+\mathcal{B}$ of two radical classes \mathcal{O} and \mathcal{B} in a universal class W of associative rings as follows:

$$\alpha + \mathcal{B} = \{R \in W : \alpha(R) + \dot{\mathcal{B}}(R) = R\}.$$

They also found the necessary and sufficient conditions for this sum to be a radical class. The purpose of this paper is to extend this sum and to find conditions for which this extended sum will be a radical class.

We shall employ the following terms and notation throughout this paper:

W: a universal class of associative rings, i.e., a class of rings homomorphically closed and containing all ideals of all rings in W.

If α is a class of rings then any ring in α is called an α -ring.

If $I \leq R$ (i.e., I is an ideal of a ring $R \in W$) then I is called an Cl-ideal of R.

If $R \in W$ has an α -ideal which contains all α -ideals of R, it is called the α -radical of R, denoted by $\alpha(R)$.

A ring $R \in W$ is Cl-semisimple if R has no nonzero Cl-ideals. The class of all Cl-semisimple rings will be denoted by S(Cl).

- Recall [1] that a subclass α of a universal class W of rings is called a *radical* class if and only if the following conditions are satisfied:
 - (a) or is homomorphically closed,
 - (b) each ring $R \subseteq W$ has an α -radical $\alpha(R)$,
 - and (c) if $R \subseteq W$ then $R/\alpha(R) \subseteq S(\alpha)$.

DEFINITION. Let α and \mathcal{B} be two radical classes in W. For each $R \subseteq W$ we set $(\alpha \oplus \mathcal{B})(R) = \sum I$ where $I \leq R$ and $I/(\alpha(R) + \mathcal{B}(R)) \in \alpha \cup \mathcal{B}$.

DEFINITION. $\alpha \oplus \mathcal{B} = \{R \in W : (\alpha \oplus B)(R) = R\}$.

NOTE. $\alpha + \mathcal{B} \subset \alpha \oplus \mathcal{B}$ and $S(\alpha + \mathcal{B}) \subset \{R \in W : (\alpha \oplus \mathcal{B})(R) = 0\}$. (Recall [6] that $S(\alpha + \mathcal{B}) = S(\alpha) \cap S(\mathcal{B})$.)

PROPOSITION 1. The class $\alpha \oplus \mathscr{B}$ is homomorphically closed.

PROOF. Let $R \in \alpha \oplus \mathcal{B}$ and R/J be a homomorphic image of R. Now $R = \sum I$, where $I \leq R$ and $I/(\alpha(R) + \mathcal{B}(R)) \in \alpha \cup \mathcal{B}$. Thus $R/J = (\sum I)/J$. Let $\alpha(R/J) = K/J$ and $\mathcal{B}(R/J) = L/J$. $\alpha(R/J) + \mathcal{B}(R/J) = K/J + L/J = (K+L)/J$. $(R/J)/\alpha(R/J) = (R/J)/(K/J) \cong R/K \in S(\alpha)$ and $(R/J)/\mathcal{B}(R/J) = (R/J)/(L/J) \cong R/L \in S(\mathcal{B})$. Thus $\alpha(R) \subset K$ and $\mathcal{B}(R) \subset L$ and hence $\alpha(R) + \mathcal{B}(R) \subset K + L$. $(R/J)/(\alpha(R/J) + \mathcal{B}(R/J)) = (R/J)/((K+L)/J) \cong R/(K+L) = (\sum I)/(K+L)$. $R/(\alpha(R) + \mathcal{B}(R))$ can be mapped homomorphically onto $(\sum I)/(K+L)$. By definition $I/(\alpha(R) + \mathcal{B}(R))$ $\in \alpha \cup \mathcal{B}$. But $I/(\alpha(R) + \mathcal{B}(R))$ can be mapped homomorphically onto $I/(I \cap (K+L)) \cong (I+K+L)/(K+L)$. Therefore $(I+K+L)/(K+L) \in \alpha \cup \mathcal{B}$. But $\sum_I (I+K+L)/(K+L) = ((\sum_I I) + K+L)/(K+L) = R/(K+L)$. By definition, $(\alpha \oplus \mathcal{B})(R/J) = \sum (P/J)$, where $P \leq R$ and $P/(K+L) \in \alpha \cup \mathcal{B}$. Now $(I+K+L)/J \leq R/J$ and $(I+K+L)/(K+L) \in \alpha \cup \mathcal{B}$. Thus $\sum_I (I+K+L)/J \subset (\alpha \oplus \mathcal{B})(R/J)$. But $\sum_I (I+K+L)/J = ((\sum_I I) + K+L)/J = R/J$.

Hence $(\alpha \oplus \mathcal{B})(R/J) = R/J$ i.e., $R/J \in \alpha \oplus \mathcal{B}$.

PROPOSITION 2. $(\mathcal{O}(\oplus \mathcal{B})(R)$ is an $(\mathcal{O}(\oplus \mathcal{B})$ -ideal of the ring R.

PROOF. Set $P = (\alpha \oplus \mathcal{B})(R)$. Since $\alpha(R) + \mathcal{B}(R) \subset P$, we have $\alpha(R) \subset P$ and $\mathcal{B}(R) \subset P$. But $P \leq R$ so that $\alpha(R) = \alpha(P)$ and $\mathcal{B}(R) = \mathcal{B}(P)$. Let $I \leq R$ such that $I/(\alpha(R) + \mathcal{B}(R)) \in \alpha \cup \mathcal{B}$. Then by definition $I \subset P$. Moreover, $I/(\alpha(R) + \mathcal{B}(R)) = I/(\alpha(P) + \mathcal{B}(P)) \leq P/(\alpha(P) + \mathcal{B}(P))$. Then, by definition, $I \subset (\alpha \oplus \mathcal{B})$ (P). Thus $(\alpha + \mathcal{B})(R) \subset (\alpha + \mathcal{B})(P)$, and hence $(\alpha \oplus \mathcal{B})(P) = (\alpha \oplus \mathcal{B})(R) = P$.

PROPOSITION 3. Let $R \subseteq W$. Then $(\mathcal{O} \oplus \mathcal{B})(R)$ is the largest $(\mathcal{O} \oplus \mathcal{B})$ -ideal of R.

PROOF. Let $I \leq R$ and let $I \in \alpha \oplus \mathcal{B}$. Then $I = (\alpha \oplus \mathcal{B})(I) = \sum J$, where $J \leq I$ and $J/(\alpha(I) + \mathcal{B}(I)) \in \alpha \cup \mathcal{B}$. Without loss of generality assume $J/(\alpha(I) + \mathcal{B}(I)) \in \alpha$. Then $J/(\alpha(I) + \mathcal{B}(I)) \subset \alpha(I/(\alpha(I) + \mathcal{B}(I)))$. But $I/(\alpha(I) + \mathcal{B}(I)) \leq R/(\alpha(I) + \mathcal{B}(I)) \leq R/(\alpha(I) + \mathcal{B}(I))$ and α is a radical class. Thus, by Theorem 1 [2], $\alpha(I/(\alpha(I) + \mathcal{B}(I))) \leq R/(\alpha(I) + \mathcal{B}(I))$. Set $\alpha(I/(\alpha(I) + \mathcal{B}(I))) = K/(\alpha(I) + \mathcal{B}(I))$. Then $K \leq R$ and $J \subset K$. Since $K/(\alpha(I) + \mathcal{B}(I))$ is in α and can be mapped homomorphically onto $K/(K \cap (\alpha(R) + \mathcal{B}(R))) \cong (K + \alpha(R) + \mathcal{B}(R)/(\alpha(R) + \mathcal{B}(R)))$, we have $(K + \alpha(R) + \mathcal{B}(R))/(\alpha(R) + \mathcal{B}(R)) = \alpha \subset \alpha \cup \mathcal{B}$. Hence $K + \alpha(R) + \mathcal{B}(R) \subset \alpha \cup \mathcal{B}$. Therefore $I = \sum J \subset (\alpha \oplus \mathcal{B})(R)$.

THEOREM 1. Let α and \mathcal{B} be radical classes in a universal class W of rings. If $S(\alpha) \subset \mathcal{B}$ or $S(\mathcal{B}) \subset \alpha$, then $\alpha \oplus \mathcal{B}$ is a radical class.

PROOF. It suffices to show that $R/(\alpha \oplus \mathcal{B})(R) \in S(\alpha + \mathcal{B})$. By definition,

 $(\mathcal{O}(\mathfrak{A})(R)(R)(R)) = \sum I/(\mathcal{O}(\mathfrak{A})(R)) \text{ where } I \leq R \text{ and } I/(J+K) \in \mathcal{O}(J\mathcal{B})$ where $J/(\mathcal{O}(\mathfrak{A})(R)) = \mathcal{O}(R/(\mathcal{O}(\mathfrak{A})(R))(R))$ and $K/(\mathcal{O}(\mathfrak{A})(R)) = \mathcal{B}(R/(\mathcal{O}(\mathfrak{A})(R))(R))$. Without loss of generality, assume that $S(\mathcal{O}) \subset \mathcal{B}$. Now, $(I/\mathcal{O}(R))/((\mathcal{O}(R)+\mathcal{B}(R))/((\mathcal{O}(R)+\mathcal{B}(R)))/((\mathcal{O}(R)+\mathcal{B}(R)))/(\mathcal{O}(R)) = \mathcal{B}$. Since $I/(\mathcal{O}(R)+\mathcal{B}(R)) \cong (I/\mathcal{O}(R))/((\mathcal{O}(R)+\mathcal{B}(R))/\mathcal{O}(R))$ we have $I/(\mathcal{O}(R)+\mathcal{B}(R)) \in \mathcal{B} \subset \mathcal{O}(J\mathcal{B})$. Hence $I \subset (\mathcal{O}(\mathfrak{A})(R))$, i.e., $(\mathcal{O}(\mathfrak{A})(R)(R)(R)(R)(R)) = 0$. Therefore $R/(\mathcal{O}(\mathfrak{A})(R))$ is $(\mathcal{O}(\mathfrak{A})(R))$ -semisimple.

EXAMPLE 1. Let M be the class of fields of two elements. UM denotes the upper radical determined by M. By [3], every UM-semisimple ring is a subdirect sum of M-rings. Moreover, subdirect sums of fields of two elements are Boolean rings [7]. Hence $R \in S(UM)$ which implies that R is a Boolean ring.

Let \mathscr{R} be the class of all regular rings [R] is a regular ring if for each $a \in R$, there exists an element $x \in R$ such that axa = a. As proved in [5], \mathscr{R} is a radical class. Moreover, every Boolean ring is regular. Therefore, all Boolean rings are contained in \mathscr{R} . Hence UM and \mathscr{R} are two radical classes such that $S(UM) \subset \mathscr{R}$ and so satisfy the condition of the theorem.

THEOREM 2. Let α and \mathcal{B} be two radical classes in W such that $S(\alpha) \subset \mathcal{B}$, $S(\mathcal{B}) \subset \alpha$ and $\alpha \cap \mathcal{B} = 0$. Then $W = \alpha \oplus \mathcal{B} = \alpha + \mathcal{B}$.

PROOF. Let $R \in W$. Each of $R/\alpha(R)$ and $R/\mathcal{B}(R)$ can be mapped homomorphically onto $R/(\alpha(R)+\mathcal{B}(R))$. Now $R/\alpha(R)\in S(\alpha)\subset \mathcal{B}$ and $R/\mathcal{B}(R)\in S(\mathcal{B})$ $\subset \alpha$. Therefore, $R/(\alpha(R)+\mathcal{B}(R))\in \alpha\cap \mathcal{B}=0$. Hence $R=\alpha(R)+\mathcal{B}(R)$ and so $R\in W$ implies $R\in \alpha+\mathcal{B}$. Hence $W=\alpha+\mathcal{B}$. But we have already noticed that $\alpha+\mathcal{B}\subset \alpha\oplus \mathcal{B}$. Hence $\alpha+\mathcal{B}=\alpha\oplus \mathcal{B}=W$.

EXAMPLE 2. Let W be the universal class of rings whose additive groups are p-primary for some prime p. Let p be a prime and set $T_p = \{R \in W: (R, +) \text{ is } p$ -primary}. Then T_p is a radical class [4]. Let $Q = \bigcup_{q \neq p} T$. We claim that Q is a radical class, in fact $Q = U(T_p)$, upper radical class determined by T_p where

$$UT_{p} = \{R \subseteq W: R/I \not\subseteq T_{p} \forall I \not\subseteq R\}.$$

Now $R \in UT_p$ if and only if $R \cong R/(0) \in T_q$ for some $q \neq p$ if and only if $R \in Q$. Moreover, $ST_p \subset Q$, $SQ \subset T_p$ and $T_p \cap Q = 0$. Hence $W = T_p \oplus Q = T_p + Q$.

University of Wisconsin-Milwaukee

REFERENCES

- [1] S.A. Amitsur, Radicals in rings and bicategories, Amer. J. Math. 76(1954), 100-125.
- [2] T. Anderson, N. Divinski, A. Sulinski, Hereditary radicals in associative and alternative rings, Can. J. Math. 17(1965), 594-603.
- [3] V.A. Andrunakievic, Radicals of associative rings II. Mat. Sb. (N.S.) 55(97) 1961, 329—346.
- [4] E.P. Armendariz and W.G. Leavitt, The hereditary property in the lower radical construction, Can. J. Math (20) 1968, 474-476.
- [5] T.L. Jenkins, The theory of radicals and radical rings, Ph. D. Thesis, University of Nebraska, 1966.
- [6] Yu-Lee Lee and R.E. Propes, The sum of two radical classes, Kyungpook Math. Jour. vol 13(1), 81-86.
- [7] H.M. McCoy, Subdirect sums of rings, Bull. Amer. Math. Soc. 53(1947), 856-877.