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ANOTHER APPROACH TO SOME RECURSION THEOREMS OF LANDAU

By C.]. Mozzochi

In the Preface for the Teacher in [2] Landau discusses some logical difficulties
in Peano’s original definitions of addition, multiplication and generalized sums
and products of natural numbers (cf. [4] for a more modern viewpoint). In his

pursuit of the elimination of these difficulties he employs throughout [2] proofs
which although very e_lémentary are nevertheless rather subtle. In this note I
outline a method of combining portions of Landau’s original proofs with a method

of proof found in Section 12 of [1] in such a way that: (A) The set of natural
h_umbers can still be taken as a set of undefined objects together with the
(unproved) Peaho Axioms. (B) Although the resulting proofs are as elementary
as Landau’s original proofs, all of the subtleties found in his original proofs
appear, to me at least, to have been eliminated.

In [3] I have completely reconstructed [2]). However, in this note I modify
only the proofs of the recursion theorems found in [2}; so that the rest of [2]
remains undisturbed. '

The reader who would prefer a r-igorous, axiomatic treatment in which the
natural numbers are constructed from sets and in which the Peano Axioms are

derived as theorems of set theory is referred to [5].

in the sequel all the theorems are numbered as in [2]; N denotes the set of
natural numbers and £ denotes the set of complex numbers. |

I now suggest the following modifications be made in [2]:

. Immediately before Theorem 4 prove the following.

THEOREM A. Let A be an arbitrary set and let ¢ be an arbitrary element in A
and let f be an arbitrary function from A into A. Ther there exists a unique

function g from N into A such that g(1)=c and g(a’)=f(g(a)) for all aEN.

PROOF. (Existence)
Let C={B|BCNXA, (1, c)&B; (e, x)EB implies (¢’, f(x))&B}. Clearly

(NXA)EC,; so that C#¢. Let g= BﬂCB. Clearly, g & C. To show that g is a
=
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function defined on N we have to show that for each ¢&EN (aq,x)Eg and (a, y)
&g implies x=y. Let M={eEN|(q,x)=g and (a,y)Eg implies x=y}. Suppose
1EM. Then (1,d)Eg and d#c. Consider k=g—{(1,d)}. (1, c) &k and if (a, x)
& h, then (a°, f(x))&h; since ¢’'#1. Hence R&C which is not possible. Hence
1=M. Suppose a=M. Then there exists one and only one element x&A such
that (a,x)Eg; so that (&, f(x))&g. Suppose @¢’&M. Then (&, 2)Eg and z7#
f(x). Consider h=g—{(a’, 2)}. (1,c)Eh and @’#1. Suppose (b, {)&h and consider
&, F(¢)).

Case 1. b=ea. Then #=x and since f(x)#z, @&, f(¢t))#(a’, z); so that (&, f(t))

=h

St L

Case 2. b#a. Then ¥W'#a’; so that (&, f(¢))#(a’, z); so that (&, f())Eh.
Hence 2&C which is not possible. Hence ¢&M and M=N.

(Uniqueness)

Suppose there exists a function 2 from N into A4 such that 2(1)=c and #(a") =
f(h(a)) for all aEN. Let M={eEN|g(a)=hr(a)}. g(1)=h(1)=c; so that 1EM.
Suppose e=M. Then g(a)=h(a); so that g(a@")=f(g(a))=f(h(a))=hr(a@"); so that
ade=M.

. Prove Theorem 4 in the following way.

PROOF. Fix a&N. By Theorem A with A=N, c=¢" and f defined f(x)=x" for
each x&EN there exists a unique function, f,, from N into N such that

1. f(L=a
1. f,(0)=f(f,(0))=(f,(8)) for each bEN.

M. Immediately after Theorem 4 prove the following.

THEOREM B. For a=1let T| be a function from N into N defined T (b)=V

for each bEN.
For a&N let T , be a function from N into N defined T ,(b)=T,(f, (b)) =

(f, (b)) for each bEN.
Then T\=f, and T ,=f, for each aEN where f_ is that of Theorem 4.

PROOF. This follows from the uniqueness of f, for each ¢=N and the following
calculation:

T (1)=1" and T1(0")=")"=(T(b)) for each & N. Also, for each ¢&N,
T, .(L=(f1)=(e") and T (&) =(f (&))" =({f,(6)) ) =(T (b)) for each bEN.
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Y. Prove Theorem 28 in the following way:

PROOF. Fix e=N. Let F be a function from N into N defined F(x)=(x+a)
for all x&N. Then by Theorem A with A=N, c=a¢, and f=F there exists a

unique function, f,, from N into N such that
I. f,(1)=a
0. f,)=F(U (b))=f,(b)+a for each bEN.

V. Immediately after Theorem 28 prove the following:

THEOREM C. For a=1 let T| be a function from N into N defined T (b)=b
for each bEN.

For acN let T, be a function from N into N defined T _.(b)=T(f,(0))+b=
f,0)+b for each b=N. Then T\=f, and T ,=f, for each a&N where f,is tha'
of Theorem 28.

PROOF. This follows from the uniqueness of f, for each ¢=N and the followin<
calculation:

7,(1)=1 and I'(0)=b'=b+1=T,b)+1 for each b=N. Also, for each e¢&EN,
T, (1)=f,(D+1=e+1=a"and T .(&) =f,0)+=(f,(b)+a)+b=f (b)+(a+b)=
F o)+ (a+by =f ,(b)+(a+b=F (b)+(b+a )=(f (b)+b)+a =T ,.(b)+a.

. Immediately before Theorem 275 prove the following:

THEOREM D. Let f be an arbitrary funciion from I . the sel of integers

greater than zero, into E. Then there exists a unique function g from [ p LHL0 E
such that g(1)=f (1) end g(a+1)=gla)+f(a+1) for all czEIp.

PROOF. Let

C={B|BCI XE, (1, f(1))EB; (e x)EB implies (e+1, x+f(a+1))EB}.
Clearly, (I, XE)EC; so that C#¢. Let ngrE]CB.

Now proceed exactly as in the proof of Theorem A.

. Then prove

THEOREM E. Let f be an arbitrary function from [ 5 into E. Then there exists
a unique fjfunction g from 1 5 into E such that g(1) =f(1) and gla+ 1) =
gla) - f(a+1) for all aEIp.

PROOF. Replace + with - in the proof of Theorem D.
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VlI. Then prove

THEOREM F. Let f be a function from [1, x] ={a&T p|1<a<x} into E. Then
there exists a unique function g, ¢ from [1, x] into E such that g, f(l) =f(1) and

g, a+D=g (a)+f(a+1) for a<x.

PROOF. This is immediate by Theorem D by defining f(e)=f(x) for each ¢>=x
and letting g, . be the restriction of g to [1, x].

K. Then prove

THEOREM G. Let f be a function from (1, x] into E. Then there exists a unique
function g, f SJrom [1, x] info E such that g, f(l) = f(1) and g, f(r:z + 1) =
g_,‘___f(cz)-f(cz—i—l) for a<x.

PROOF. This is immediate by Theorem FE by defining f(e)=f(x) for each >z«
and letting g, be the restriction of g to [1, x].

X. Now let * signify either 4+ or - then prove

THEOREM H. Let f be a function from (1, x+1) into E. Let T be a function
from [1,x+1] into E defined: T(fz)zngf(a) for 1<<a<x and let T(x+1)=
g, K0*f(x+1). Then T(a)=g, . {a) for each a&|l, x+1].

PROOF. This follows from the uniqueness of g ., f and the following calcula-
tion: 7°(1) =gx,f(1) = f(1). Suppose a < x; SO that ¢ + 1<<x. Then T(a+1) =
g, latD=g, (@)*fle + 1) =T(a)*f (@ + 1). Suppose a=x. Then T(a + 1)=

g, (a)xfla+1)=T(a)xf(a+1); so that T(e+1)=T(a)*f(a+1) for a<xz+1.

Y. Now proceed directly to Theorem 277.

Box 1315
Hartford, Conn. 06101
U.S. A.
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