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ON CERTAIN HERMITE APPROXIMATIONS

By Jin Bai Kim

1. Introduction

In the classical Hermite approximation, we construct the unique polynomial
p(x) of degree <2m+1 such that

(D fx)=p(x), ffxp=p(x), 07 m,
where Xg %yp *tts X, Are€ distinct points.

In this paper we are concerned with the Hermite approximation in which we
construct a polynomial p(xy, x5, **, xk) of degree <2x-+2 in x, %x,, ***, %, such that
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for 0 <7, 7, -, 7,<<# at each vertex of the k-dimensional unit cube and
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2. k-dimensional form of an imposed Hermite approximation

We construct the A-dimensional Hermite approximation formula which satisfies

(2) and (3). To simplify the notation, we intreduce the following. Let S, be the

set of all vertices of the A-dimensional unit cube. Let » €S, and we write 7=

(z(1),=(2), -, w(k)). (Note that z(?)=0 or 1.) For an independent variable x,
we define =(x,) by

X, if #(¢)=0,

=(%) 2{1—::, if z(¢)=1.

r, If #(#)=1,
We also define |x(7,)| by \?r(f'})|={
0 if =(¢)=0,

b
and define |x (7,75, -, 7,)] =Ellrr(rf)l for 07, <

We write )R @ 7% PSR y,) to denote

ar1+?'2+"'+?}

) 7 72
0%, '0x, 0%,

;- S (%), %9y -+, %) at x,=y,({=1,2, -+, B).
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Using the above notations, we can introduce a polynomial by (%, %oy -+, x,) of
degree <2z+1 in x;, %, -'-,xk by
” Iﬁ(tlr tﬂ: "t ti)l
(4 Pl(xlsxgr " -7‘5;;_.)— 22 (=1 S (71') s, (ﬂ'xl) ‘?,:EC xg)

i, 1, t}—O HES;, t,1ls,
qn(”k)]* where q.(x) is a polynomial defined by (see [2 (8)])

® o@=E-a- &G,

Now we can state the following proposition.

PROPOSITION 1.
(6) p(x]_r xzr "% xk) zpl(x]_! le % xk)

E
I A—z)x)" 1

1 1
T k f f(f(x]_r xz: ' xk) —pl(xl, .'»'CZ, ver xk))dxldxz"'dxk
00 o0

(2n+3) (2"'_

is a polynomial of degree < 2n+2 in x,, %, ***, X,, which satisfies (2) and (3).

PROOF. We observe the integral

[ [+ [pCay, 2y, -, m)dx Ay 5, OF 5C1, 2y, -, 2 i (6).
00 O

1
Noting that fff[ _l!f (l—xz.)xz-] jHltsf.aclfsa':':z--*-4:1’:11:15',— i"‘—"“'—y we can see
o =1 2n+3)" [ ED]
that p(x,, x,, -, xk) satisfies (3). Now we consider (2). It is clear that
ar1+r2+---+?‘n

1 . .
_axl"‘ax;ﬂ---ax;" ( z121(1 —x)x)"" " at any = in S, is equal to 0 for 0 <7, 7, ', 7,

< #. Therefore it suffices to show that
grtret TR
in., T Z
0%, 0%y "+++0%,
at each = in S, for 0 <7, 7y, 7,<nm By observing (5), it is not difficult to
see that

?1(-’51: Xoy * xk) Sy, 7, - (xlr Koy ** xk)

d’

(7 - —q, (nx,)=(— 1)1l g ., where d; is the Kronecker delta. Using (7),
x.
E
we can see the following:
ar1+r2+-:- Y

0x ?"laxz?'z'“ axkfk ﬁl(xl, x2’ - xk) I (%1, 2z, *++, %a) —7
1
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) - b d?’n d?'r.-
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{0 1,=0  A=S, e dx, d:u:}E

# ’ \ R
— Z Z (_1)[20‘1:#2 th)lftl tE (/‘{) ( 1)'2( 1)[+|1(7‘2)|+ +IZC?’)| l"[ a

t, e, 0y=0 AES,

—_— | (1: 2y " Tk ‘ _ | (rllrﬂl'.'l rk)l
=(—p'Hrereemlg @ (=D

rl" ?"2' -Ea

=f, , .., (®.

This proves the proposition.

3. Error analysis

First we obtain the error of f—p when 2=1. We suppose that f(2”+2)(x) exists
at each point of (0,1). Following the argument in the proof of Theorem 3.1.1[1,

p.56], we set - ?{Efg —2 S’g 1 =K(%), for a fixed x such that 0# x 7 1. Consider
X x—

w(®) =F() —p(f)-—(t(t—l))”“f{(x)

n+1
—F(D) —py () — —EA=D) fo*oo — b (Mdy— (E(t— 1)K ().

w(#) vanishes at f=0, 1 and =x. It is not difficult to show that w(”)(t) vanishes
at #--3 points including £=0, 1; and hence applying the generalized Rolle’s Theorem

1.6.3[1], there is a point A such that zu<2ﬂ+2) (4A)=0. By computation, we obtain
K(x) as

n+1
K (%)= L ((n+2) 7 (=1)

| (gn__g)(~f+2) f(f(y)-—ﬁ (»))dy. A& (0,1).

Thus the error of f—p (which will be denoted by E(f—p)) is given by E(f—p)
=(x(x—1))”+1K (x). Similarly, we can obtain that E(f(x,y)—p(x,y))=E(f(x,y)
—p(x, »))—(p(x,3)—p(x,9)), where E(f(x,9)—p,(x,¥)) is equal to (13) in [2]
(We assumed that f,, 5 5,,2(%,3) exists at each point (x,3) in (0,1)X(0,1)). To
give an explicit form of the kA-dimensional error term of f—p, we review (3.1)
and (8.2) of Stancu[3, p.138]: R(f)=R1(T2(f))+R2(T1(f))—R2(R1(f)). We rewrite
this as R(f)=R;(f)+R,(f)—RyR,(f) or equiveleqtly, R=R,+R,—R,R,, which

leads inductively to, for K=1{1,2, -+, B}, R= Z R,—2. RR;+ 25 RRK, —-

i=1 > pIPI
2, JEK 2, f, m=K
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1
(x.(x.-l))"+ g2n+2
| k+1 ‘ .
F(=1)*"'R,R,_,"R3R,R,. We define R, as R,= 2(2:z+2)! T and

Z

R,f means the value of R f at (x,%,, ", %,_,. 4, X;1 10 %0000 %) Tor 4, & (0, 1).
Finally, the error term of f—p is given by (see (4) and (6) for p and p,)
E=pP)=R(O=p=p)=RD—(p(x;, 2, -+, £) =y (%1, %, . %)), Where R;R;f

=R, (R(f)). (In the above, we assumed that fy,, .5 5,19 ... 9,49(%]s %o, +=*, 1,) €xists

at each point (x;, %, -+, x,) in (0, 1) X (0, 1) X---X(0, ). )

4. The uniqueness

PROPOSITION 2. There is no polynomial q(x,, %y, =+, x,) other than p(x,, %y, -+, %)
of (6) of degree <2n+2 in x,x,, -, %,, such that q(x, x,, -, %,) satisfies (2) and
(3).

PROOF. We prove the proposition for 2=1. Suppose that ¢(x) is a polynomial
of degree <2n+2 such that ¢(x) satisfies (2) and (3). Consider F(x)=p(x)—q(x),

: 1 2 21+ 2
which takes the form F(x)zcn HxH +c, +2x”+ R o PSP - Y From (2) and

(3), we obtain a system of linear eguations:
nt2 ¢ n+ 2 n+2

4 . . . _ e (n_l"l)! | (”+2)!_
(8) z'Z=1 7 Iﬂl zl =0 Ef””_o' ElCnHJC"“LFO’ ’ T ntlT T g
- (On+2)! B
Coppo ™" (n+2)! Cont2=0-

These n+2 equations (8) with #+2 unknowns c.(t=n+1,n+2, -, 2n+2) have a
non-trivial solution iff the determinant |C|=0, where

~1/n+2 1/n+3 ¢ . . 1/2n+ 3-

1 1 . . 1

c r+1 n+2 SO 2n+-2
(n+2)! (2n+2)!

- 1. “ . -
(n+1)1 21 (n+2)1
. L (n+1)!

But by computation, we have |C|= H+1(m!) Con 31 #0. Therefore, we

m=n ’

conclude that ¢

nri=0(@=12 7 2), and hence F(x)=0. The foregoing argument
is applicable to the proof in case of #>=2, and we omit the proof for 2= 2,

West Virginia University
Morgantown, W. Va. 26505



On Certain Hermilte Approximations o

REFERENCES

1] P.]. Davis, Interpolation and approximatiorn, Blaisdell, New York (1963).

2] G.M. Phillips, Explicit forms for certain Hermite approximations, BIT (1973), 177—
180.

[3] D.D. Stancu, The remainder of certain linear approximation formulas in two variables,
J. SIAM Series B Numerical Analysis 1 (1964), 137—163.




