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FIXED POINT THEORY ON FffiERINGS(l)

BY SooN-KYU KIM

Given a function f from a space X into itself, any question which inquires

into the existence, nature and number of fixed points is called fixed point

theory.
In this article, we will focus on results which require X to be a fairly rea

sonable space such as a compact polyhedron or a compact connected metric

ANR and f a continuous function. We first discuss fixed point theory, and

then results concerning fiber preserving mappings.

1. Fixed poiJlt theory.
A. L. E. J. Brouwer's Theorem.

One of the earliest theorems on fixed point theory is the following Brouwer's

theorem.

THEoREM ([2]). For n~O any mapf from D'= {x E R"llIxll::;;;;l} into itself

has a fixed point.

If there is no fixed Point, then the boundary 'OD' (=S,.-l) is a retract of

D'that is impossible by an easy application of algebraic toPology.

B. The Lefschetz Theorem.

As a generalization of Brouwer's theorem, the Lefschetz fixed point theorem

is one of the most useful tools in fixed point theory.

THEOREM ([18], [13]). Let X be a compact ANR and f: X-x be a con

tinuous map such that L( f;F) =1=0 for a field F. Then every map homotopic

to f has a fixed Point. Here L(f :F) is defined as

(1) The essence of this survey article was delivered as an invited address at the Seoul

National University and the Jeonbug National University in August 1976 while the author

was staying in Korea by an invitation of the Korean Mathematical Society and the Dep

artment of Science and Technology, Republic of Korea.
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2(-1)-" Trace ff,
l

ff: 1P(X;F) ~ Hk(X;F).

We note that if f is the identity map, then LUd, F) is the Euler-Poincare

characteristic number X(X), and that the converse statement of the theorem is.

false because if we choose a space X whose Euler-Poincare number is zero,

then L(id, X) =0 and every point is a fixed point. Thus if a space X is Q

acyclic (Q=rational field) i. e., HP(X;Q) =0 for all p-=f:O and HP(X;Q) -;;:Q,

then any map on X has a fixed point. Furthermore, any map on a real proj- .

ective space RPJ-", a complex projective space CP'b', a quaternionic projective·

space HF2", and the Hilbert cube r has a fixed point.

C. Local index theory ([3J, [4J).
Another useful tool in fixed point theory is the local form of Lefschetz

theorem.

Let f:X~X be a map from a compact ANR space X into itself. If U is,

open in X andf has nO fixed points in U=cl(U)-Int(U), then we say (X,

f, U) is admissible. For an acltnlllsible triple (X,f, U), assign a number i(X,

f, U}(Q with the following properties: (there exists a unique such index)

(l) (Localization). If (X,f, U) and (X, g, U) are admissible and f=g on

cl(U), then i(X,f, U} =i(X, g, U).

(2) (Homotopy). 1£ fO,f1 are homotopic by a homotopy It and (X,fe, U)

is admissible for each t, then i(X,fo. U} =i(X,fr. U)

(3) (Additive). If (X,f, U) is admissible and U1······U8 are mutually disjo- 

int open sets in U and I has no fixed points in U- (U J=J.Uj ), then i(X,f, U)."

=Ei(X, f, Uj). In particular, if f has no fixed points in U, i(X,f, U) =0.
j-l

(4) (Normalization). If (X,f, X) is admissible, then i(X,f, X) =L(f, F).

(Use a suitable cohomology theory for L(f, F). )

(5) (Commutativity). If f:X-'>¥ g: Y--X and (X,gof, U) is admissible,.
then i(X, gof; U) =i(Y,fog, g-l(U).

THEOREM ([3]). If i(X,f, U) *0, then f has a fixed point in U.

D. The Nielsen number ([19]).

The Nielsen number for a map f: X-'>X of a compact ANR space is a_
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non·ne~ative integer NC/) that is a lower bound for the number of fixed points

of every map that is homotopic to f. Let 'P(j, X) = {x E Xlf(x) =x}. Then q,

is a compact space. We divide 'P by an equivalence relation given by XO"'Xh

Xo. Xl E 'P iff there is a path e: I--+X from Xo to Xl such that e is homotopic

(with ends fixed) to fee). Then the equivalence classes are a finite number

of disjoint sets F h F 2, •••• F". If f is the identity map or the space is simply con·

nected. then there is only one class provided 'P*if>. We choose open set Uj

such that Ui:::>Fj and cl(Uj ) n lP=Fj for each j. Then the Nielsen number

is defined to be the number of Nielsen classes F j such that i(Fj)=i(X,j, V j )

*0 (see C).

THEOREMS ([3J, [4J, [15J. [19J. [22J).

Cl) Any map f: X--+X of a compact ANR space has at least N(f) jixetl
points.

(2) If f and g are homotopic in X. then NU) =N(g).

(3) Since L(f) =i(X,j, X) = t. i(X,j, Vj), Vj:JFj• N(f) =0 implies L(j}
J~l

=0.
Ho-<iJever. there are manifolds in all dimensions and maps on them such that

L(f)=O but N(f»):2 (by B. McCord).

(4) Suppose X is simply connected. If L(J) =0, then N(f) =0. and if L

(f) :/; O. then N (f) = 1 (because there is only one Nielsen class).

(5) In general. if L(J):/; O. then N(f»):1.

(6) N(f) ~the Reidemeister number of f. R(J). The Reidemeister number of

f is the number of equivalence clQ,$ses of the fundamental group 0 1(X) divi

ded by a rea/ation given by arv13. (a. 13 EO1 (X» iff there is an element fE

Ol(X) such that. a=rf3f*(r-1). If 01(X) is abelian. then R(f) is the

cardinality of coker(l-f*).

E. Jiang subgroups and Jiang spaces.

To obtain a sufficient condition for N( f) to be zero when L(f) =0. (see D

(3». and to establish bounds on N(f) when LU) *0, Jiang [19J and IGottlieb

[12J sutdied a subgroup of 01(X) that is called the Jiang subgroup T(f).

Let Xtl be a base point of a compact ANR space X. An. element a E Ol(X,f

(xo» is said to be in the Jiang subgroup T Cf. xo) if there is a map H: X X
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[0, I]-+X such that H(x, 0) =f(x) =H(x, 1) and the loop H(xo, -) represe

nts a.

THEoREMS ([12J, [19J).

(1) If X is a path connected space, then T(f,xo)=T(f,Xl), xo, Xl EX.

That is, the Jiang subgroup is independent, up to isomorphism, of the choice

of base point.

Let T(X) denote the Jiang -subgroup for the identity map id: X-+X. Then

we have

(2) T(X) =T(id) cT(f) cDl(X) for any map f: X-+x.

(3) If f and g are homotopic, then T(f)=T(g).

(4) T(X) r;;;P(X, xo) cZ(D1(X», (=the center of Dl(X», where P(X,

xo) is the set of elements that act trivially on all homotopy groups D,.(X).

Thus (a) if X is a simply connected polyhedron that is not the homotopy type

of SI, then T(X)=1 since Dl(X) has no center; (b) Since Dl (RP2a) does

not act trivially on Dz,.(RJ>2n), T(PR2a) =1 for all n>O; (c) If X is a

closed 2-manifold that is neither torus TZ nor Klein bottle KZ, then T(X) =1

because Dl(X) has trivial center if X is not one of RPz, TZ, and KZ.
(5) If X is a spherical space (e. g. Eilenberg-MacLane space), then T(X)

=Z(Dl(X». Thus T(K2)=Z(Dl (K2».

(6) T(XxY)=T(x)E!1T(Y). However, the Jiangsubgroupsdo not behave

well with respect to a map f: X-+Y, i. e., f *(T (X» may not be a subgroup
of T(Y)

A space X is called a Jiang space if T(X) =Dl (X). The fundamental

grouP of a Jiang space is necessarily abelian.

(7) All H-spaces, the quotient space of a topological grouP with respect to

a connected compact Lie subgroup, generalized lens spaces (see Section 2), and

odd dimensional real projective spaces RP2a+l are Jiang spaces.

(8) If a space is a Jiang space, then the following are true (true even if

TU, xo)=Dl(X, xo».

(a) All the Nielsen fixed point classes Fh "', F,. of f: X-+X have the same

index, i.e., i(Fl)=···=i(F..)=k.

(b) Therefore we have L(f,Q)=El i(Fj)=kN(f).

(c) L(f)=O implies N(f)=o (see D(3) and D(4».
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Cd) IfL(J)* 0 and X is a Jiang space,then N(J)=R(J) (see D(6».

F. Converse of Lefschetz fixed point theorom.

A compact metric ANR space X is called a Wecken space [22J if for any

map f: X-+X there exists a map g that is homotopic to the given map f and

g has precisely N(t) fixed points.

THEoREMS.
(1) Every finite polyhedron K with property that sta-a is connected for

every 0 or I-simplex a of K is a Wecken space [22J.

(2) Every connected finite polyhedron, which contains a 3-simplex and has

the property that ost(v) is connected for every vertex v, is a Wecken space

[21].

(3) Any topological manifold of dimension ~3 (with or witlwut boundary)

is a Wecken space [5J.
(4) (Converse of Lefschetz theorem). Let X be a Wecken space. If X is

also a Jiang space and L(J) =0, then f is homotopic to a map that has no

fixed points. Thus, if f is a map of a compact topological manifold M of

dimension ~3, then f is hotrwtopic to a map that has exactly NU) fixed

points, and if M is also a Jiang space and L(J) =0, then f is homotoPic to

a fixed point-free map (Fuller (1954) and Fadell(I965».

Now we can state the Lefschetz fixed point theorem for Weeken and ]iang

spaces.

(5) (Lefschetz theorem). If a compact connected ANR space is a Wecken

and Jiang space. then L(f) *0 iff every map homotopic to f has a fixed
point.

(6) If a space X is a Wecken space, then X admits a fixed point-free map

homotopic to the identity iff x(X) =0 since X(X) =L(idz ).

For example, n- dimensional torus T" is a Weeken and Jiang space and X

(T") =0. Therefore there is a map that is homotopic to the identity and has

no fixed points. (This is, of course, trivial.)

G. The fixed point property.

A space X has the fixed point property (f. p. p) if every map f: X-+X has

a fixed point. We have mentioned some such spaces in B.
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THEoREMs.
(1) If X is a Wecken space, then X has a f.P·P· ijf N(f)+O for every'

map f:X......X.
(2) If X is a Wecken-Jiang space, then X has a f· p. p. ijf L(f) *0 for·

every map f:X......X.
(3) If X is a compact ANR space and Y is a Wecken space which has a

f.p.p., then the maPPing cylinder 1'4(1) for a map f:X-Y has a f.p.p·

(4) If X is a Wecken space which has a f. p. p., then Xx [0, 1J has a f. p.

p. since Xx [0, 1]= M(id).

(5) If A,B have a f.p.p., then the wedge product AVB has a f.p.p.

(6) We know that CP28 has a f. p. p. We can SMw that the suspension XCP21t

of Cp2" has a f. p. p.

However, there are examples tk4t show (4), (5) and (6) are not true in

general (see [5J, p. 148"'150).

(7) Bredlm El] considered a space x,.=$k ~ IJ4a, identified by a non

triTJial element aE H2m-l(S'), Xa has a homotopy invariant f.p.p. prooidea

that k is odd (l1I,d 2111-1--1<1--1. However, XaxX«, admits a fixed point

free map if tke order of a and the order of a' is relatively prime.

(8) Husseini [14J has constructed smooth manifolds M and M' that have a

f.P.P., but MXM' does not have a f.p.p. It is an open problem whether 01.'

not the square Mx M of a manifold M which has a f. p. p. has a f. p. p.

2. Fixed poiBt th.eory on iiherin,gs.

Let p: E-B be a Hurewicz fiber map; i e., the covering homotopy prop

erty (CHP) holds for any space or equivalently it has the path lifting prop'·

erty (PLP). Let El be the space of all continuous mapping from I to E with

compact open topology, and o(E) = {(e,w) EEXBI!p(e) ==w{O)}. Defineq: El

-O(E) by q(w') = (w' (0), Pw'). A lifting function is a continuous map).:

O(E)-+EI such that q' A=id on Q(E). It is regular if it lifts a constant path

to a cOnstant path. For eXfu"Ilple, if B is a metric space, then any fibering

p: E-+B has a regular lifting function. If p: E-+B is a locally trivial fiber

space and if B is a paracompact and T rspace, then p has a lifting function.

A fibering p: E-+B is orientable if w E RI is any loop at bo E B, then W:p-l

(bO)_p-I(!Jo) given by w(e) =l(e, w) (1) for each e E p-l(bo) induces an
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isomorphism w*:H*(p-l(bo);Z) ........H*(p-l(bo);Z). Let f: E-+E be a fiber

preserving map; i. e., flp-l(b): p-l(b)-+p-l(b'), h' E B. If 0): [0, l]-+B IS a

path from h' to b, then we may define a map fb: p-l(b)-+p-l(b) by, for each

eEp-l(b), fo(e) =).(f(e), 0)) (1). A fiber preserving map f also defines a map

fB: B-+B such that p. f=fB . p. We note that fo: p-l (b)-+p-l (b) depe

nds, in general, on the choice of path 0). But the Lefschetz number L (f b)

is independent of path 0) [6J.

THEOREM 2.1 ([16J). Let p: E-+B be an orientable Hurewicz fiber map

ping from a compact metric n-manifold (n;;;;'3) onto a compact, connected

metric ANR Band f: E-+E be a fiber preserving map. Suppose there is a

connected ANR fiber Fb and the total space E is a Jiang space (i. e., T(E) =

D1 (E) ). If either fo: F r--+F b or f B: B-+B is homotopic to a fixed point-free

map, then f is homotopic to a fixed Point-free map.

Sketch of Proof. In the case when fB: B->B is homotopic to a fixed point

free map, it may follow by the CHP. If gb is homotopic to fo and it has no

fixed points, then N(h) =N(gb) =0, hence L(fb) =0. Since L(J) =L(jB) .

L(fb) it follows that LU) =0. Since E is a ]iang space, LU) =0 implies

NU) =0. Therefore f is homotopic to a fixed pointfree map because E is a

Wecken space. The formula LU) =LUB) . L(fb) can be found in [7] for

a polyhedron and in [l6] for a compact ANR space.

Let S2n+1 = {z= (zo, zj, "', z.) E C·+l1 Iz I=I}. If a: 5 2.+1 -+S2.+I is a homeo

morphism given by a(z)=(zoe2tc;/P,zle2tc;Q,/P, ''',zne2tc;Qn/P), P?:2 odd, where

Q\>Q2,"',qn are integers such that (p,qj)=l, then a induces a free Zp-action

on 8 2.+1• The orbit space S2n+l/Zp is called a generalized lens space,

L2n41 (P,Q\>"·,q.). Then we know D1(L2n+l(p,qI,·",qn»=Zp. Suppose

(Tk,1I1) is a free k-dimensional toral group action on a manifold such that the

orbit space M/Tk is L 2n+l (p, qh .", qn)' Such actions are classified by the

homotopy classes [L2n+1(P), CP(oo)kJ=H2(~n+I(P)' Zk) = (Zp)k.

THEOREM 2.2 ([16J). If f: M~M is an equivariant map (or bundle map)

and if either fb:Tk (X)--+Tk (x) or flL2n+Jep) :~n+l(p)->L2n+l(P) is homotopic to

a fixed point-free map, then f is homotopic to a fixed point-free map. Where

pex) is the orbit through the point x. To prove this, we show that M is

homeomorphic to ~n+1(d) XTR for some d that divides p and use Theorem

2.1. InD(2) of Section 1, we said that if jt''''g: X->X of a compact ANR
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space, then N(f) =N(g). Jiang [15] improved this theorem.

THEOREM 2.3 ([15J). Suppose h: X---+Y (compact ANR space) is a homo

topy equivalem;e and the diagram commutes homotoPically:

I
X~X

tkg Lk
Y~Y

11 D1(X) is finite, then N(f)=N(g).

In 1976, Fadell improved this by using the mapping cone and a local index.

THEOREM 2.4 ([10J). Theorem 2.3 is true withcmt assuming the finiteness

of the fundamental grcmP D1(X).

We have noticed that L(f)=L(fB) . L(fb) for an orientable Hurewicz

fiber map p: E---+B and a fiber preserving map f: E---+E. We try to see whe

ther or not a similar product formula holds for the Nielsen numbers; i. e. ,

This formula is not true in generel. An example can be formed in the Hopf

fibering S4S4S2 [8]. To this regard, Brown and FadelI were able to prove

the following theorem.

THEOREM 2.5 ([6], [8]). Let p: E---+B be a locally trivial fiberspace with

fiber F. Suppose E, B, F are connected finite polyhedra, f: E-+E a jiber'

preserving map. If (a) D1(B)=D2(B) =0 or

(b) D1(F) =0 or

(c) p:E-+B is trivial with D1(B) =0 or 1=/BX!h,

then N(f)=N(fB) . N(fb) for alllb, bEB.

Pak [20] formulated an obstruction to the product formula for the Nielsen

numbers. The obstruction number is defined algebraically and some calcu

lations of numbers in various cases can be found in [17].

THEOREM 2.6 ([20J). Let p: E---+B be an orientable locally trivial jiber

map. Suppose E, B, p-l(b) are compact connected ANR Jiang spaces ana

a fiber preserving map I has non-zero Lefschetz number. Then there exists a

number P(f) such that N(f) ,P(f)=N(/B) ·N(!h).

EXAMPLE ([17J). Let Sl---+EtCP" be a circle bundle over a complex pro-
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jective space CP". Then E corresponds to some i EZ:;:.lP(CP";Z) =.[CP";CP

(00)]. The space E will be a Jiang space. Suppose f: E~E is a fiber

preserving map such that L(f) ,*0. H degree (f,) =d, i E Z, then

P(f)= ~~-k, ,~b, , k=deg(f)modlil. Therefore, the product formula

holds iff P(f)=l; i.e., Il-dl=(l-k, lil). This implies that the product

formula holds for SI-bundle over CP" iff ll-deg(!b)! divides lil.
A fibering p: E-+B is called injective if the inclusion i: p-I (b)-+E induces

a monomorphism i*: OI(p-I(b»-+D1(E) for all bEB. We note that the

HopE fibering Sl-+S3-+S2 is not injective.

THEoREM 2.7 ([17J). Let p: E-+B be an orientablelocally trivial injective

fiber map. Suppose E, B, p-I(b) are Jiang spaces and their fundamental

groups are finitely generated abelian groups. If the exact sequence

(}-+DI(p-1(b» ~ D1(E) ~ D1(B) -+ 0 splits and D1(B) is finite and

L(f) '*0, then N(f) =N(fB) . N(fh).

COROLLARY 2. 8 ([17J). Let p: E-+B be an orientable locally trivial

injectfoejiher map. Suppose E, B, p-1(b) are Jiang spaces and their fundame

ntal groups are finitely generated abelian groups. If DICB) is finite

and either there exists a cross section or p-l(b) is a retract of E, then N

(f)=N(fB)· NUh)'

EXAMPLES ([17]).

(a) Let Tk-'>E_T" be a principal TLbundle over T". For any fiber pre

serving mapf: E-+E we have N(f)=N(fT") . N(fh).

(b) Let Sl-E-L.3(p, q) be a principal SLbundle over a 3-dimensional
lens space. Here E is determined by [fj] E [L.3(p,q), CP(oo)]:;:.fl2(L3 (p,

q) ;Z)=.Zp- Let f:E-+E be. a fiber preserving map such that h.W =C2, lB.
(lp) =(;t> where 1 generates 0 1(SI):;:Z and lp generates 0 1(L.3(p, q» :;:Zp.
Then N(f)=N(h) . (l-ct>d), where d=(j,p). Therefore, NUh)' (1

cI,d) P(f)=N(h) . N(fB), hence N(fB) = (l-ct> d) P(f). For example,

if P=15 and j=IO so that d=5 and l-cI=1-C2=3, then N(f)=3' (3,5)=

3 so that N(f),*N(fB) . NCh). However, in this case, P(f)=3 and3=N

ClB) = (l-ct> d)P(f) = (3, 5) . 3.

Note that in proving the product theorem, we had to show the indepen-
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-dency of N(j,,). Fadell and Brown [6], [8]· showed it for a locally trivial

iiOOr map and polyhedra. and Fadell [11] shows the following: If p:E-+B is

an orientable Hurewicz fiOOr map, then N(!b) is well de1ined; i. e., it is

independent of the choice of path I'll: [0, l]-B from b to b' and points b, h'

EB.
THEOREM 2.9 ([l1J). Let p:E-+B be an orientable Hurewicz.fiher map (all

spaces are compact metrU: ANR) ana f: E~E a fiher Presemng mal'. Then

there exists Il locally trivial fiber map p':E'-+B' and fibcr preserving map

f: E'-+E' with E', B', p'-I(b) finite polyhedra suck that N(f)=N(f'),

N(fB) =N(f 's), and N(f,,)=N(fi). Consequently, FaJelllists the product

theorems.

THEOREM 2.10 ([11]). Let P:E-+B be an orientohle Hurewicz fiber map

with E and B ANR's (compact metric) and f:E-E be a jiber preserving

map. Then N(f)=NUB) . NU,,) in each of the folluwing cases:

(a) R1(B)=U2(B)=O ([6], [8]).

(b) U 1(F)=O ([6], [8J).

(c) 1': E-+B is./iber homotopically trivial and 01(1J) =0 ([6J, [8]).

(d) There is a homotopy cMnniUtatitJe diagram

$Uch that ~Ip-l (b') is a homotiJpy equivalencef",. each b'E1J ([6], [8], [11]).

(e) D1(B) =0 and p: E-+B is injeetif!e ([20]).

(n The sequence ~Dl(p-l(h))-+lll(1Z)-Jil(B)-o is $plit exact seq
1I>ence with sPlitting map u, H=imo- is normal, Ii1(B) is all torsion and

D1(E) is torsion free ([17] for Jiang spaces).

(g) P:E-+B admits a section u: B-+E ~h that fir=q! and DI(E) is

4helian ([17])..

THEOREM 2.11 ([11]). Let p: E-+B be an orientahle Hurewic!J:. fiber map

with E, B, p-l(b) cqn.nected compact metrU: ANR and let f: E-+E be a}Wer

4 P*
preserving map. SuPPose tke sequence Q-+Ol(p-l(b))------)-1l1(E)------)-D1(B)-+O
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is exact and p* admits a right inverse (section) 0' such that tf H=invO',

then f*(H) cH, Then N(j)=N(jB) . N(fb)'

THEOREM 2.12 ([l1J, [17J). Let p: E---+B be an orientable injective Hure

7.t'UZ fiber map with E and B connected compact metric ANR and let f: E---+

B be a jiber preserving map. If in.: 01(B)---+D1(B) fixes only the identity,

then NU) =N(fB) . N(!b).
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