CHAIN CONDITIONS AND Q-MODULES

By WUHAN LEE

It will be assumed that all rings have an identity and that the modules are unital. Modules will be right R-modules, and homomorphisms will be R-homomorphisms unless otherwise stated. Previously the author defined a q-module to be an injective module in which every submodule is quasi-injective and obtained several characterizations of a q-modules and investigated the endomorphism ring of a q-module [4].

Later E. Lee [5] established that a left S-submodule $_SN$ of M_R , $S=\operatorname{Hom}_R$ (N,N) is noetherian if and only if N_R is noetherian with respect to annihilator submodules for subsets in R. Further, he studied that if R is a right artinian ring and N_R a submodule of a q-module M_R then the left S-module $_SN$ is noetherian. Now the purpose of this paper is to study properties of a q-module with chain conditions over a commutative ring.

Let R be any ring (not necessarily commutative) and M a right R-module. Put $S=\operatorname{Hom}_R(M,M)$, then we assume that M is a left S-module. Let N be a subset of M. Then we denote the annihilator ideal of N in S and in R by l(N) and ann N, respectively. Similarly, by r(A) we denote the annihilator submodule of M for a left ideal A in S. We call M a weakly distinguished R-module if for any R-submodules $N_1 \supset N_2$ in M such that N_1/N_2 is R-irreducible, $\operatorname{Hom}_R(N_1/N_2, M) = 0$. If M is quasi-injective then M is weakly distinguished if and only if rl(N) = N for any R-submodule N in M [2, Proposition 6].

Finally, we shall assume that a ring R is commutative. In his paper [1] Harada states that if R is a commutative ring and M is a noetherian quasi-injective module then $S=\operatorname{Hom}_R(M,M)$ is left and right artinian. Since every submodule of a q-module is quasi-injective and injectivity of M_R implies that of quasi-injectivity, the following statement is immediate.

PROPOSITION 1. Let R be a commutative ring and M_R is a noetherian q-module.

If N is a submodule of M then $S=\operatorname{Hom}_R(N,N)$ is left and right artinian. Proof. Since every submodule of a notherian module is again noetherian the result is evident by [2, Theorem 1].

Let P be a prime ideal in a commutative ring R. And let E(R/P) = E be an injective hull of R/P. Then Matlis showed in [7] that $E = \bigcup_i A_i$ and $\operatorname{Hom}_R(E,E)$ is a complete local noetherian ring, where $A_j = \{X \in E \mid xP^i = 0\}$. Let $\{P_i\}$ be a finite set of distinct maximal ideals in R. Then according to Harada [1], every R-submodule N of $\Sigma \oplus E(R/P_i)$ is weakly distinguished and quasi-injective.

Since its implication seems to be interesting, we furnish a rough proof here. Proof. We may assume that N is an essential submodule of $E = \sum \bigoplus E_i$, E_i $= E(R/P_i)$. Then ann $x \supset I\!I P_i^*$ for any x in N. Let N_1, N_2 be R-submodules of N such that N_1/N_2 is R-irreducible, then $N_1/N_2 \approx R/P_i$ for some P_i . Since $N \cap R/P_i \neq (0)$, $\operatorname{Hom}_R(N_1/N_2, N) \neq (0)$, which means that N is weakly distinguished. Hence, E is an R-weakly distinguished injective module. Moreover, if we put $S = \operatorname{Hom}_R(E, E)$, then $S = \operatorname{Hom}_R(E, E)$. Hence, every R-submodule N is an S-submodule by [1, Lemma 1]. Let E' be an injective hull of N contained in E. Then $E = E' \oplus E''$ and $E' \supset N$. $S' = \operatorname{Hom}_R(E', E')$ may be regared as a subring of S. Hence, M is also an S'-module. Therefore, N is R-quasi-injective by [3, Theorem 1.1].

PROPOSITION 2. Let R be a commutative noetherian ring and $\{P_i\}$ be a finite set of distinct maximal ideals in R. Then the direct sum of injective hulls $\Sigma \oplus E(R/P_i)$ is a weakly distinguished q-module.

Proof. The injective hulls are naturally injective and hence the conclusion is immediate from the definition of a q-module.

Now assume that a ring R is not necessary commutative. A. Koehler [4] obtained a characterization for quasi-injective modules over left artinian rings which have a finitely generated, lower distinguished (contains an isomorphic copy of every simple module), and injective module Q. This class of rings includes quasi-Frobenius rings and finitely generated algebras over commutative artinian rings. According to Koehler, a module M_R over such a ring is quasi-injective if and only if

$$M = \sum_{i=1}^{k} \bigoplus (\operatorname{Hom}_{R}(e_{i}S/e_{i} J, Q))^{g(i)}$$

where $S=\operatorname{Hom}_R(Q,Q)$, e_i is an indecomposable idempotent in S for i=1, \cdots , k, J is an ideal of S, the number of nonisomorphic simple R-modules is k, and for $i\neq j$ $e_iS\not\cong e_jS$. This decomposition is unique up to automorphism. Here $\Sigma \oplus M_i^ig(i)$ denotes the g(i) copies of M and g(i) can be any cardinal number. If g(i)=0, then $M_i^{g(i)}=0$.

PROPOSITION 3. Let R be a left artinian ring and have a finitely generated lower distinguished, and injective module Q. Then a submodule N_R of a q-module M_R is expressed uniquely (up to automorphism) as

$$N = \sum_{i=1}^{k} \bigoplus (\operatorname{Hom}_{R}(e_{i}R/e_{i}J, R))^{g(i)}$$

where $S=\operatorname{Hom}_R(Q,Q)$, e_i is an indecomposable idempotent in S for i=1, ..., k, J is an ideal of S, the number of nonisomorphic simple R-modules is k, and for $i\neq j$ $e_iS\not\equiv e_jS$.

Proof. Obvious.

COROLLARTY. Let R be quasi-Frobenius. Then a submodule N_R of a q-module M_R is expressed uniquely (up to automorphism) as

$$N = \sum_{i=1}^{k} \bigoplus (\operatorname{Hom}_{R}(e_{i}R/e_{i}J, R))^{g(i)}$$

Proof. R being quasi-Frobenius impies R is left artinian, selfinjective lower distinguished, and finitely generated. Also $R = \text{Hom}_R(R, R)$.

References

- [1] M. Harada, On quasi-injectic modules with a chain condition over a commutative ring, Osaka J. Math. 9 (1972), 421-426
- [2] M. Harada and T. Ishii, On endomorphism rings of noetherian quasi-injective modules, Osaka J. Math. 9 (1972), 217-223
- [3] R.E. Johnson and E. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268
- [4] A. Koehler, Quasi-projective and quasi-injective modules, Pacific J. Math. 36 (19 71) 713-720
- [5] W. Lee, Endomorphism ring of a q-module, Seoul Natl Univ. Fac Papers, Vol. 4, Ser (C) (1975)
- [6] E. Lee, On Properties of q-modules, to appear
- [7] E. Matlis, Injective Modules over noetherian rings, Pacific J. Math. 8 (1958), 511-528
 Seoul National University