73

Bull. Korean Math. Soc.
Vol. 13, No. 2, 1976.

L'-LIPSCHITZ CONDITION AND THE EXISTENCE
OF SOLUTIONS IN Z'(0,1)

By JonGsik KM

One of the standard methods of proving the theorem that the Lipschitz
condition guarantees the existence of the unique solution of ¥ =f(x,y) with
an initial condition is that of using the contraction mapping (cf. [13). In
this paper, we shall make a straight-forward generalization of the above me-
thod to the space of Lebesgue integrable functions and get a similar result.

We recall that when X= (X, p) is a metric space, a mapping T: X—X is
called a contraciion mapping in X if there is a number %, with 0<#<1, such
that z,yeX, z+#y, implies

p(Tz, Ty)<kp(z,y).

We shall use the following definition.

DerFINITION 1. Let I=(0,1) and R be the set of real numbers. Let f(z,¥)
be a function on IXR. We shall say that f(z,y) satisfies L*~Lipschitz con-
dition in L*(0,1) if f(x, g(z))el(0,1) for any g(z)el1(0,1) and also if for
every g;(z) and g,(z) in L0, 1)

W f(z, g1(x)) —f(z, g2(x)) Il =k 1l g1(x) —ga() il
with 0<2<1.

We note that if g is a continuous real valued function on (0,1) with
Suple(2) <1,

then f(z, ¥)=g(z)y trivially satisfies L-Lipschitz condition. It can be shown
that f(z,5) =4 (1+2|y|)™* satisfies also Li-Lipschitz condition.

We shall use the following well-known theorem without proof (cf. [1J).

THEOREM 1. If X is a complete metric space and T is a contraction mapp-
ing, then T has a unique fized point.

The following theorem is a direct result following from the definition of
L1-Lipschitz condition.
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TueorReM 2. If f(x,y) satisfies L*Lipschitz condition in L'(0,1), then the
mapping T:L'(0,1) — L'(0,1) defined as T(g(z))=f(z,g(x)) for any
g(x) in LY(0,1) is continuous.

We shall prove that the equation

%=f (z,9) a e, o=y (o)

has a unique absolutely-continuous solution in L!(0,1) if f(z,y) satisfies L1
Lipschitz condition.
TuroreM 3. If f(z,v) satisfies L*~Lipschitz condition, then for every (xqy,%.)
in IXR, there exists a unique integrable function y=g(x) such that

(i) g(2) is absolutely continuous, and

(@) L=f(,5) a.c with n=g(z).

We shall first prove the following lemma,

LEMMA 4, Let f(x,¥y) be a function on IXR such that f(x,g(x))e L(0,1):
Sor every g(x)e L1(0,1). Then for (zy, y0) in IXR, the equation

%=f(x,y) a.e., y0=5(x0)
has an absolutely continuous solution in L1(0,1) if and only if
g@ =g +] ¢£0)d
e

has a solution g(x) in L1(0,1).

Proof. f y=g(x) is a solution of the given differential equation which is-
absolutely continuous, then due to 8 .19 and 8. 21 in [2],

e@ =g +[ ¢ Od=n+[ £eg0)dt.

Conversely if g(x) is a solution of the integral equation, then, since f(z, g~
(x))eL*(0,1), due to 817 in [2] g(z) is absolutely continuous and

dil(:) =f(z,2(x)) a.e. with yp=g(z0).

Proof of theorem 3.
Consider the mapping defined on L1(0,1) such that

(Te) (@) =30+ |_ft.8®)ar
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for every g(z) in L'(0,1) and z in (0,1).
Then for any g;(z) and go(z) in L(0,1)

” (ngl) () — (Tga) (z) 1 |
=[] 17 -Fe @)} i
g.ﬁ J: If(t,g:(2))—f (¢, 82(8)) |dt dx

<[ [ 1r@a@) -1t g:00)1de a2
=1 8:) —f 6, 20) 1
Skilgi(®—g@®

Therefore T is a contraction mapping. By theorem 1, there exists y= g(2) in
L1(0,1) such that (T'g) (z) =g(z) in L0, 1). That is,

g(z) :yo‘*'_[:f(t, g®))dt a.e.

Since Tg is absolutely continuous, we may choose g(z) to be absolutely con-

tinuous. Then
g@=n+[ ftg@)a.

By the lemma, we obtain the theorem.
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