L^{1}-LIPSCHITZ CONDITION AND THE EXISTENCE
 OF SOLUTIONS IN $\boldsymbol{L}^{1}(0,1)$

By Jongsik Kim

One of the standard methods of proving the theorem that the Lipschitz condition guarantees the existence of the unique solution of $y^{\prime}=f(x, y)$ with an initial condition is that of using the contraction mapping (cf. [1]). In this paper, we shall make a straight-forward generalization of the above method to the space of Lebesgue integrable functions and get a similar result.

We recall that when $X=(X, \rho)$ is a metric space, a mapping $T: X \rightarrow X$ is called a contraction mapping in X if there is a number k, with $0<k<1$, such that $x, y \in X, x \neq y$, implies

$$
\rho(T x, T y) \leqq k \rho(x, y) .
$$

We shall use the following definition.
Definition 1. Let $I=(0,1)$ and R be the set of real numbers. Let $f(x, y)$ be a function on $I \times R$. We shall say that $f(x, y)$ satisfies L^{L}-Lipschitz condition in $L^{1}(0,1)$ if $f(x, g(x)) \in L^{1}(0,1)$ for any $g(x) \in L^{1}(0,1)$ and also if for every $g_{2}(x)$ and $g_{2}(x)$ in $L^{1}(0,1)$

$$
\left\|f\left(x, g_{1}(x)\right)-f\left(x, g_{2}(x)\right)\right\| \leqq k\left\|g_{1}(x)-g_{2}(x)\right\|
$$

with $0<k<1$.
We note that if g is a continuous real valued function on (0,1) with $\sup _{\substack{x \in(0,1)}} \operatorname{g}(x) \mid<1$,
then $f(x, y)=g(x) y$ trivially satisfies L^{1} Lipschitz condition. It can be shown that $f(x, y)=\frac{1}{2}(1+x|y|)^{1 / 2}$ satisfies also L^{1}-Lipschitz condition.

We shall use the following well-known theorem without proof (cf. [1]).
Theorem 1. If X is a complete metric space and T is a contraction mapping, then T has a unique fixed point.

The following theorem is a direct result following from the definition of L^{1}-Lipschitz condition.

Theorem 2. If $f(x, y)$ satisfies L^{1}-Lipschitz condition in $L^{1}(0,1)$, then the mapping $T: L^{1}(0,1) \rightarrow L^{1}(0,1)$ defined as $T(g(x))=f(x, g(x))$ for any $g(x)$ in $L^{L}(0,1)$ is continuous.

We shall prove that the equation

$$
\frac{d y}{d x}=f(x, y) \text { a. e., } \quad y_{0}=y\left(x_{0}\right)
$$

has a unique absolutely-continuous solution in $L^{1}(0,1)$ if $f(x, y)$ satisfies L^{1-} Lipschitz condition.

Theorem 3. If $f(x, y)$ satisfies L^{1}-Lipschitz condition, then for every (x_{0}, y_{0}) in $I \times R$, there exists a unique integrable function $y=g(x)$ such that
(i) $g(x)$ is absolutely continuous, and
(ii) $\frac{d y}{d x}=f(x, y)$ a.e. with $y_{0}=g\left(x_{0}\right)$.

We shall first prove the following lemma.
Lemma 4, Let $f(x, y)$ be a function on $I \times R$ such that $f(x, g(x)) \in L^{1}(0,1)$. for every $g(x) \in L^{1}(0,1)$. Then for $\left(x_{0}, y_{0}\right)$ in $I \times R$, the equation

$$
\frac{d y}{d x}=f(x, y) \text { a.e., } y_{0}=y\left(x_{0}\right)
$$

has an absolutely continuous solution in $L^{1}(0,1)$ if and only if

$$
g(x)=g\left(x_{0}\right)+\int_{x_{0}}^{x}(t, g(t)) d t
$$

has a solution $g(x)$ in $L^{1}(0,1)$.
Proof. If $y=g(x)$ is a solution of the given differential equation which is. absolutely continuous, then due to 8.19 and 8.21 in [2],

$$
g(x)=g\left(x_{0}\right)+\int_{x_{0}}^{x} g^{\prime}(t) d t=y_{0}+\int_{x_{0}}^{x} f(t, g(t)) d t .
$$

Conversely if $g(x)$ is a solution of the integral equation, then, since $f(x, g$ $(x)) \in L^{1}(0,1)$, due to 8.17 in [2] $g(x)$ is absolutely continuous and

$$
\frac{d g(x)}{d x}=f(x, g(x)) \quad \text { a.e. with } y_{\theta}=g\left(x_{0}\right) .
$$

Proof of theorem 3.
Consider the mapping defined on $L^{1}(0,1)$ such that

$$
(T g)(x)=y_{0}+\int_{x_{0}}^{x} f(t, g(t)) d t
$$

for every $g(x)$ in $L^{1}(0,1)$ and x in (0,1$)$.
Then for any $g_{1}(x)$ and $g_{2}(x)$ in $L^{1}(0,1)$

$$
\begin{aligned}
& \left\|\left(T g_{1}\right)(x)-\left(T g_{2}\right)(x)\right\| \\
= & \int_{0}^{1}\left|\int_{x_{0}}^{x}\left\{f\left(t, g_{1}(t)\right)-f\left(t, g_{2}(t)\right)\right\} d t\right| d x \\
\leqq & \int_{0}^{1} \int_{x 0}^{x}\left|f\left(t, g_{1}(t)\right)-f\left(t, g_{2}(t)\right)\right| d t d x \\
\leqq & \int_{0}^{1} \int_{0}^{1}\left|f\left(t, g_{1}(t)\right)-f\left(t, g_{2}(t)\right)\right| d t d x \\
= & \left\|f\left(t, g_{1}(t)\right)-f\left(t, g_{2}(t)\right)\right\| \\
\leqq & k\left\|g_{1}(t)-g_{2}(t)\right\|
\end{aligned}
$$

Therefore T is a contraction mapping. By theorem 1 , there exists $y=g(x)$ in $L^{1}(0,1)$ such that $(T g)(x)=g(x)$ in $L^{1}(0,1)$. That is,

$$
g(x)=y_{0}+\int_{x_{0}}^{x} f(t, g(t)) d t \quad \text { a. e. }
$$

Since $T g$ is absolutely continuous, we may choose $g(x)$ to be absolutely continuous. Then

$$
g(x)=y_{0}+\int_{x 0}^{x} f(t, g(t)) d t
$$

By the lemma, we obtain the theorem.

References

[1] C. Goffman and H. Pedrick; First course in functional analysis, Prentice Hall. 1966.
[2] W. Rudin; Real and complex analysis, McGraw Hill, 1972.

Seoul National University

