Bull. Korean Math. Soc. Vol. 13, No. 2, 1976.

AN APPLICATION OF EXTREMAL LENGTH METHOD TO THE BOUNDARY BEHAVIOR OF ANALYTIC FUNCTIONS

BY UN HAING CHOI

The purpose of this note is to present an example of a simple application of extremal length method to the boundary behavior of analytic functions.

THEOREM: Let f(z) be a bounded single-valued analytic function in the complement of E, where E is a totally disconnected compact set of positive capacity in the complex plane. Then it is not the case that for each z in E, except for those z in a set of capacity zero, there exist two arcs in the complement of E at z on which f(z) has the limits a and b, $a \neq b$.

Proof. Assume that the statement is not true. Choose a point in E where exist two arcs A and B in $\mathcal{C}E$ on which f(z) has the limits a and b respectively.

Select a Jordan curve J in $\mathcal{C}E$ containing arcs A and B, and enclosing a subset E_J of E of positive capacity.

Let L be a subarc of f(J) and consider the family \mathcal{F} of all curves with end points in L and $\partial(f(\mathcal{E}E)) - \{a, b\}$. Then the extremal length of \mathcal{F} is finite, and it follows from remark on p. 84 in [1] that the extremal length of $f^{-1}(\mathcal{F})$ is also finite.

Let $G = \{z \in E_J: a \text{ curve in } f^{-1}(\mathcal{F}) \text{ ends at } z\}$. Then G is of positive capacity by Lemma 1 in [2]. On the other hand G must be a countable set by remark 4 in [3]. Thus we have arrived at a contradiction. This completes the proof of the theorem.

References

- Ohtsuka, M. Dirichlet Problem, Extremal Length and Prime Ends, Van Nostrand, New York 1970.
- [2] Pfluger, A. Extremallaengen und Kapazitaet, Comm. Math. Helv., 29 (1955) pp. 120-131.

Un Haing Choi

[3] McMillan, J.E. Arbitrary Functions Defined on Plane Sets, Michgan Math. J. 14 (1967). 445-447.

Inha University

72