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NOTE ON UMBILICAL HYPERSURFACES WITH UNIT
VECTOR FIELDS OF A REAL SPACE FORM

By V-HANG KI AND SooN HWA ANN

Introduction.

Recently, Law!'On [2J has studied a hypersurface in a real space form of

'constant mean curvature which has parallel Ricci tensor. With use of these

results, Mogi and Nakagawa [5J have given a classification of hypersurface

in a real space form with parallel Ricci tensor or the Cartan's condition ab

out Ricci tensor.

In the present paper, we consider umbilical hypersurface M with unit vec

tor fields in a real space form M(c) , that is, there exist mutually orthogonal

unit vector fields U and V such that the second fundamental tensor H of M
with induced Riemannian metric tensor g has the from

H=aI+/3(u@U+v0V),
g(U, X) =u(X), gCV, X) =v(X)

for any vector field X, a and f3 being functions on ]11.

First of all we shall prepare some local properties about a hypersurface of a

real space form. In the last section 2, we prove some lemmas on an umbilical

hypersurface with unit vector fields, and give classifications of the space.

§ 1. Certain hypersurfaces of a real space form.

Let M(c) be an (n+1)-dimensional real space form covered by a system of

coordinate neighborhoods {O;yE}, where here and in this section the indices

A, fJ., ).I, K, ••• run over the range {I, 2, 3, ... , n + I} , that is, the curvature

tensor of M(c) has the form

(1.1)

,c being constant, where g).Jl. are components of Riemannian metric tensor of

M(c).
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Let M be an n-dimensional hypersurface which is covered by a system of·

coordinate neighborhoods {U;x"}, where here and in the sequel the indices

h, i, j, ... run over the range {I, 2, 3, ... , n}, and which is differentially imme-·

rsed in M(c) by X: M-+M, i. e., y"=y.«.r").

We put B/=oy"/oxi, 0i=%xi, then componenents gji of the induced me

tric tensor of M are given by gji=gltfJ/B/'. B;.< are, for each i, local vector

fields of M(c) tangent to M and the vectors R/ are linearly independent in

each coordinate neighborhood. B/ is, for each K, a local I-form of M.

We choose a unit vector C" of M normal to M in such a way that n+1

vectors B;", C" give the positive orientation of M.
We denote Vd and V; by the Christoffel symbols formed with Riemannian

metric gji and the operator of covariant differentiation with respect to Vi}

respectively. Then the equations of Gauss and Weingarten are respectively

(1. 2)

(1. 3)

VjBi'<=OjB;"+ Vl} B/Bil_B,," Vi} =hjiC",

VjC"=OjC"+ {p"l}B/C"= -h/B&",

where hji are the components of second fundamental tensor with respect to

the normal C", hi defined by hi=hjtgth and (gji) = (gj;) -1.

In the sequel, we need the structure equations of the hypersurface M, that

is, the following equations of Gauss

(1. 4)

where K kjih are c:>variant c;:>mp:>nents of the curvature tensor of jlf, and equ

ations of Codazzi,

(1. 5)

From equations (1.4) of Gauss, we have the relationships

(1. 6)

and hence

Cl. 7)

where Kji and K are respectively the components of Ricci tensor and the cur

vature scalar of Ai

A hypersurface ill of dimension n is said to be an umbilical form with unit-
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vector fields, if there exist on M, two mutually orthogonal unit vector fields,

u" and v" such that

(1. 8)

for some functions a and 13.

From the relation above, we find

(1. 9)

(1. 10)

(1. 11)

h/=na+2j3,

hjtu/= (a +13)Uj, hjttf= (a+ jJ)Vj,

hjiMi=na2+4af3+2132

because u" and v" are unit orthogonaL Thus the second fundamental tensor

(hi) has at most two eigenvalues a and a+ 13 of multiplications n-2 and 2

respectively.

If we substitute (1, 10) and (1. 11) into (1. 7), we get

(1. 12) K=n(n-1) (c+a2) +4 (n-1)a/H2j32.

§ 2. Umbilical hypersurfaee with unit vector fields.

Throughout this paper we consider the hypersurface M of dimension n>3

is an umbilical form with unit vector fields.

LEMMA 2.1. Let M be an umbilical form with unit vector fields of dimen

sion n>3 such that the curvature scalar K is constant. '['hen a and f3 are con

stants on M.

Proof. Differentiating (1. 8) covariantIy along M, we have

(2.1) Pkhji=akgji+/3k(UjUi+VjV;)

+ f3 {(VkUj)Ui+ (17kUi)Uj+ (VkVj)Vi+ (17kVih'j},

from which, taking skew-3ymmetric parts with respect to k and j and using

(1. 5),

(2.2)

akgji-ajgki+ {3k(UPi+VjVi) - {3j (UkUi +VkVi)

+ f3 {(VJ,Uj- VJUk)Ui+ (17kUi)Uj- (PjUi)Uk

+ (flkVj-fljVk)Vi+ (PkVi)Vj- (fljVi)Vk} =0,

where Pi/X is denoted by ak. If we transvect (2.2) with uiz/vk and uiviuk..

we have respectively
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(2.3)

(2.4)
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utat+utf3t =0,

r,tat+v!3t =0

because u" and v" are unit orthogonaI.

Differentiating (1. 12) covariantly, we find

{2.5)

by virtue of K=constant, from which, transveeting u j and using (2.3),

(2.6)

If atut~o, then (n-1)a+2!3=0 which implies (n-3)/7j(a2) =0. This contra

-diet atut~O. Co~equently we have

'(2. 7)

In the same way we also have from (2. 4)

(2.8)

Next, transvecting (2. 2) with gji and taking account of (2. 7) and (2.8),

we obtain

(2.9) (n-1)ak+2f3k

=!3 {Ut17tUk+V 17t'/"k+ (/7,ut)Uk+ (17tv )vk}.

On the other hand, if we transvect (2.2) with ujui and vivi , we get res·

1Jeetively

(2.10)

(2.11)

ak+ f3k+ f3 {-Ut17tUk- (usut17tvs)Vk} =0,

ak+ !3k+!3 {-V17tVk- (vsv17tUs)u,,} =0.

Combining (2.9), (2.10) and (2. 11), we conclude

(2.12) (n-3)ak= - f3 {(VSV17tus-/7tut)Uk+ (usut/7tV s-/7tV )Vk}'

which implies that vsvt/7tus=17tut, usut/7tVs=/7tV because of (2.7) and (2.

8). Thus (2.12) means a is constant for n>3 and hence !3 is also by virtue

'Of (2. 5) , Therefore, Lemma 2, 1 is proved.

LEMMA 2. 2. Under the same assumptions as those stated in Lemma 2. 1 we

ha"Je 17khji=O and consequently 17~ji=O.

Proof. a and !3 being constants because of Lemma 2. 1, we see from (2. 2)
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that [3=0 or

(vkUj-VjUk) Ui+ (V kUi) Uj- (V jUi) Uk

+ (VPj-V/Dk)Vi+ (V"Vi)'l,j- (VjT.'i)'l',,=O.

If f3=0, then M is totally umbilical by virtue of (1. 8) and hence 11~ji=O.

Thus we may only consider f3*O.

Transvecting (2.13) with ui and vi, we obtain respectively

(2.14)

(2.15)

From (2. 14) and (2. 15) we have

(2.16)

(2. 17)

VtVtUj= - (vtAt)vj,

UtVtVj= (utAt)uj,

UtvtUj= - (utA,)vj,

VtVtVj= (vtAt)uj'

Substituting (2. 14) and (2. 15) into (2. 13), we obtain

(2.18) A,,(Uj'l)i-VjUi) +A-j(VkUi-U"Vi)

+up"Ui-U"VjUi+Vjl7"Vj-V"VjVi=O.

Transvecting (2.18) with uj,vj and taking account of (2.16) and (2.17),

we find respectively

(2. 19) V kUi= - A"Vi,

(2.20) V"vi=ii"Ui.

Thus (2.1) implies Vkhji=O because of (2.19), (2.20) and Lemma 2.1.

Thus (1. 6) prove3 the last assertion of the lemma.

LEMMA 2. 3. Under the same assumptions as those stated in Lemma 2. 1, we

have

(2.21) a(a+.B) +c=O.

Pro?j. Differentiating (2.19) covariantly and using (2.20), we get

(2.22)

from which, taking skew-symmetric parts with respect to k and j and making

use of the Ricci identity,
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(2.23)

(2.24)

or, using (1. 4) and (1.10),

(/70j-/7jAk)Vi

=c(U!Jfji-Ujgki) + (a+ f3) (uJflji-ujhki).

Transvecting (2. 24) with ukoivi, giiuk and using (1. 9) and (1. 10), we

have respectively

utvS/7tA.-utvS/7.AI=C+ (a+ {j)2,

utvs/7tfls-utvs/7sAt= (n-1)c+ (a+ /3) {(na+2f3} - (a+ f3)}.

The last two relations imply (2. 21). This completes the proof of the lemma.

In the case where ambient space M is Euclidean, from (1. 12) and (2.21),

we have

(2.25)

If the curvature scalar K is positive, by completenes;, .M is congruent to S2

(r) xEn-2 or Sn-2(r) XE2, and if K=O, M is cylindrical because the Ricci

tensor is parallel (cf. [3], [5J).

Thus we have proved

THEOREM 2.4 Let M be a complete and connected umbilical hypersurface VJ'ith

unit vector fields defined by (1.8) such that dim M>3 and the curvature sca

lar K is constant. Then M is congruent to S2(r) X En-2 or S"-2(r) XE2 if the

scalar curvature K>O, and 111 is a cylinder if the scalar curvature K=O.

Now, we suppose that the real space form .ii1(c) is of constant curvature c

*0 and the hypersurface M has the constant scalar curvature K and n>3.

Then by means of Lemma 2. 1, 2.2 and 2. 3, we have two cases: (1) M has

exactly two distinct constant principal curvatures, fay a and a+ /3 of multi

plicities n-2 and 2 respectively, such that c+a(a+m=0, and (2) M is to

tally umbilic but not totally geodesic.

For the first case, we use Lemma 2.3. Then, from the straightforward ar

gument used by Lawson [2J, we obtain the following conclusion:

If c>O, then M is isometric to S2(Cl) XS"-2(C2), and if C<O, then M is is

ometric to S2(cl) x Hn-2(C2), sr(a) being a sphere with curvature c and Hr

(a) a hyperbolic space with curvature a.
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For the second case, M is totally umbilic but not totally geode,ic. If c>O,

then M is isometric to a sphere S", and if c<O, then M is a sphere S", a

hyperbolic space R" whose curvature is different from c, or a flat hypersurface

F".

Thus, summing up the results obtained above, we have proved

THEOREM 2.5. Let M be an (n+ 1)-dimensiQ1/al and simply connected real

space form u>ith curvature c*O and let M(n>3) be a complete and connected

vmbilical hypersurface rL'ith unit vector fields defined in (1.8) such that the

I:urvature scalar K is I:onstant. Then the follouing statements are true:

(l) If c>O, then M is isometric tothe great sphere, the small sphere or 52

(Cl) XS"-2(C2) , where I/Cl+1/C2=1/C.

(2) If c<o, then M is isometric to S", Rn, F" or S2(C1) XR"-2(C2) , 5"-2

{Cl) X fl2(C2) , where l/c1+1/c2=I/c.
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