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NOTE ON UMBILICAL HYPERSURFACES WITH UNIT
VECTOR FIELDS OF A REAL SPACE FORM

By U-HANG K1 AND SooN HwA ANN

Introduction.

Recently, Lawson [2] has studied a hypersurface in a real space form of
‘constant mean curvature which has parallel Ricci tensor. With use of these
results, Mogi and Nakagawa [5] have given a classification of hypersurface
in a real space form with parallel Ricci tensor or the Cartan’s condition ab-
out Ricci tensor.

In the present paper, we consider umbilical hypersurface M with unit vec-
tor fields in a real space form M(c), that is, there exist mutually orthogonal
unit vector fields U and V such that the second fundamental tensor H of M

with induced Riemannian metric tensor g has the from

H=al+BuEQU+-2QV),
U, X)=u(X), gV, X)=v(X)

for any vector field X, @ and 8 being functions on M.

First of all we shall prepare some local properties about a hypersurface of a
real space form. In the last section 2, we prove some lemmas on an umbilical
hypersurface with unit vector fields, and give classifications of the space.

§1. Certain hypersurfaces of a real space form.

Let M(c) be an (n+1)~dimensional real space form covered by a system of
coordinate neighborhoods {U;»<}, where here and in this section the indices
A, u,v, K, ---run over the range {1,2,3,---,z+1}, that is, the curvature
tensor of M(c) has the form

(1 1) Kvyizzc(glpgu:_gulgyx)y

¢ being constant, where g;, are components of Riemannian metric tensor of
M(c).
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Let M be an n-dimensional hypersurface which is covered by a system of’
coordinate neighborhoods {U;x*}, where here and in the sequel the indices
k,i, 4, ---run over the range {1,2,3, -, n}, and which is differentially imme--
rsed in M(c) by X: M—M, ie., y*=y(zb).

We put BFf=0y"/0x', 3;=08/0«", then componenents g;; of the induced me-
tric tensor of 44 are given by g;;/=g.B/#B:*. By are, for each i, local vector
fields of M(c) tangent to M and the vectors B/ are linearly independent in
each coordinate neighborhood. B is, for each £, a local 1-form of M.

We choose a unit vector C* of M normal to M in such a way that n+1
vectors B, C¢ give the positive orientation of M.

We denote {#;} and p; by the Christoffel symbols formed with Riemannian
metric g;; and the operator of covariant differentiation with respect to {;%}

respectively. Then the equations of Gauss and Weingarten are respectively

(1.2) ¥ iBif =0;B+ {53} Bi#*BA—By* {;*;} =h;:C*,
1.3) 7;Cr=0,C+ {53} B#C*= —hB*,

where kj; are the components of second fundamental tensor with respect to
the normal C*, k;* defined by hjt=h;,g'* and (g#)=/(g;) "
In the sequel, we need the structure equations of the hypersurface A, that

is, the following equations of Gauss
(1.4 Kijin=c(grrgji—gin8k) +hurhsi— hinhy;,

where Kj;;x are covariant components of the curvature tensor of Af, and equ--
ations of Codazzi,

1.5) Vahji—~F jhp;=0.

From equations (1.4) of Gauss, we have the relationships

(1* 6) Kji: (ﬂ—l)cgji+ (htt) hj,'—kj,h,'t
and hence
(1.7 K=nr(n—1)c+ (k)2 —h;h7,

where Kj; and K are respectively the components of Ricci tensor and the cur-
vature scalar of AL

A hypersurface Af of dimension 7 is said to be an umbilical form with unit-
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vector fields, if there exist on M, two mutually orthogonal unit vector fields:
#* and v* such that

1.8 hji=cag;ji+ B(ujui+vv:)

for some functions @ and §.
From the relation above, we find

(1.9) ki=na+28,
(1.10) bt = (a+B)u;, hjt=(a+B)v;,
(1.11) kjihii=na’+4ab 282

because #* and v* are unit orthogonal. Thus the second fundamental tensor
(h;%) has at most two eigenvalues @ and a+ 8 of multiplications n-2 and 2.
respectively.

If we substitute (1.10) and (1.11) into (1.7), we get
(1.12) K=n(n—1) (c+a?) +4(n—1)af+2£2

§ 2. Umbilical hypersurface with unit vector fields.

Throughout this paper we consider the hypersurface A/ of dimension 7>>3

is an umbilical form with unit vector fields.

LEMMA 2.1. Let M be an umbilical form with unit vector fields of dimen-
sion n>3 such that the curvature scalar K is constant. Lhen a and B are con-

stants on M.
Proof. Differentiating (1. 8) covariantly along M, we have

2D 7 ihji=augjit B (it vjv:)
+B8{(T )i+ Wi+ Fwidvi+ T vy,
from which, taking skew-symmetric parts with respect to k and j and using
(1.5),
a8 i— gkt Bl juit ;) — B (g +vpws)
2.2 +B{W e,V jug)ui+ (V) — () ey
+ Fpo;—~7 jop) vit+ o) vi— (P o) v =0,
where Py is denoted by a;. If we transvect (2.2) with wiv'v* and wfviut,

we have respectively
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(2 3) u’at+u'13,=0,
2.4 v, + v 8,=0

‘because u* and v* are unit orthogonal.

Differentiating (1.12) covariantly, we find
(2.5) (n—1) (na+28)a;+2{(n—1a+p}B8;=0.
by virtue of K=constant, from which, transvecting #/ and using (2.3},
(2.6) (n—2) {(n—1) a+26} (a*) =0.

If awx0, then (z—1)a+26=0 which implies (#—3)¥F ;j(@® =0. This contra-
dict @ %0. Consequently we have

2.7 aut=0, PBu*=0.
In the same way we also have from (2.4)
(2- 8) Ol,'v‘:o, ﬂ,‘v‘—‘:().

Next, transvecting (2. 2) with g/ and taking account of (2.7) and (2.8),
we obtain

(2.9) (n—1) az+28;
=BV o'V ot (Tt upt () vl

On the other hand, if we transvect (2.2) with #/# and v/v¥, we get res-

pectively
(2. 10) g+ Bt Bl — (wu'V 0 v} =0,
2.11) apt Bt Bl w— (o'l ) ugd =0.

Combining (2.9), (2.10) and (2.11), we conclude

(2- 12) (”_3) Ap= '—ﬁ{(v"ﬂtVt”s—qut) wt (us“tVtva"Vtvt) T’k} ’
which implies that "oV, =V, wu'Pw,=F* because of (2.7) and (2.
8). Thus (2.12) means « is constant for >3 and hence § is also by virtue
of (2.5). Therefore, Lemma 2.1 is proved.

LEMMA 2.2. Under the same assumptions as those stated in Lemma 2.1 we
have 7ih;;i=0 and consequently [ K;;=0.

Proof. a and B being constants because of Lemma 2.1, we see from (2.2)
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that =0 or
(2.13) (T ii—F jup) it (P uj— (7 ju:) up
+ (Fpoi—F epvit (Pwdv;— T o) ve=0.

If 8=0, then M is totally umbilical by virtue of (1.8) and hence Fhji=0.
Thus we may only consider 0.

Transvecting (2.13) with «' and ©*, we obtain respectively
2.19 Vuwu;—T = Ajop— Apv;,
(2.15) Vw;—V o= Awe;— Ajuy,
where A;=u'V jv,.
From (2.14) and (2.15) we have

(2.16) v ;= — (v A)v;, wlu;=— (W A)vj,
2.17) W=D,  vVwi= (0 A)u;

Substituting (2.14) and (2. 15) into (2.13), we obtain

2.18) Ap(uvi—oju) +A;(vi—up0;)

+ujl7ku,~—u1,l7,-u,-+v,-l7kv,-——vkl7;u,-=0.

Transvecting (2.18) with #/, v/ and taking account of (2.16) and (2.17),
we find respectively

2.19 V= — Agvs,
(2. 20) 7 wvi= Az

Thus (2.1) implies 74h;;=0 because of (2.19), (2.20) and Lemma 2. 1.
Thus (1.6) proves the last assertion of the lemma.

LEMMA 2.3. Under the same assumptions as those stated in Lemma 2.1, we
have

(2.21) ala+B8) +e=0.
Proof. Differentiating (2.19) covariantly and using (2.20), we get
(2.22) VW jui= — (VA vi— A A,

from which, taking skew-symmetric parts with respect to %2 and j and making
use of the Ricci identity,
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(2.23) ~Kyjineh= (U jA—V 1A i,
or, using (1.4) and (1.10),

2.24) FA;—r ;A v
=c(upgji—uign) + (a+B) (uzh ji—uihy).

Transvecting (2. 24) with u*v/v’, g/u* and using (1.9) and (1.10), we
have respectively
wo' A —wtv'p Ay=c+ (@+f)?,
w7 A, —uto'V A= (n—De+ (a+B) {(na+28} —(a+8)}.

The last two relations imply (2.21). This completes the proof of the lemma.
In the case where ambient space M is Euclidean, from (1.12) and (2.21),

we have

(2.25) K=#—-1) (n—4)a®>+28°=0.

If the curvature scalar K is positive, by completeness, M is congruent to S%
(r) X E»2 or S*2(r) X E?, and if K=0, M is cylindrical because the Ricci
tensor is paralle! (¢f. [3],(5)).

Thus we have proved

THEOREM 2.4 Let M be a complete and connected umbilical hypersurfoce with
unit vector fields defined by (1.8) such that dim M >3 and the curvature sca-
lar K is constant. Then M is congruent to S?(r) X E*? or S*~2(r) X E? if the
scalar curvature K >0, and M is a cylinder if the scalar curvature K=0.

Now, we suppose that the real space form M({c) is of constant curvature c¢
#0 and the hypersurface M has the constant scalar curvature K and 7z>>3.
Then by means of Lemma 2.1, 2.2 and 2.3, we have two cases: (1) M has
exactly two distinct constant principal curvatures, say ¢ and a+p5 of multi-
plicities z—2 and 2 respectively, such that ¢+a(a+8)=0, and (2) M is to-
tally umbilic but not totally geodesic.

For the first case, we use Lemma 2.3. Then, from the straightforward ar-
gument used by Lawson [2], we obtain the following conclusion:

If ¢>0, then M is isometric to SZ(cy) XS* 2(cy), and if ¢<0, then M is is-
ometric to S¥(e;) X H*2(cz), S7(a) being a sphere with curvature ¢ and HT

(a) a hyperbolic space with curvature a.
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For the second case, M is totally umbilic but not totally geodesic. If >0,
then M is isometric to a sphere S, and if ¢<0, then M is a sphere S*, a
hyperbolic space H” whose curvature is different from ¢, or a flat hypersurface
F=,

Thus, summing up the results obtained above, we have proved

THEOREM 2.5. Let M be an (n+1)-dimensional and simply connected real
space form with curvature ¢+0 and let M(n>>3) be a complete and connected
vmbilical hypersurface with unit vector fields defined in (1.8) such that the
curvature scalar K is constant. Then the following statements are true:

(D) If ¢>0, then M is isometric tothe great sphere, the small sphere or §*
{c1) X 8" 2(c;), where 1/c;+1/ca=1/c.

@) If ¢<0, then M is isometric to S*, H*, F" or 52(c)) X H*2(c,), §72
{c1) X H%(cy), where 1/ci+1/c,=1/c.
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