Bull. Korean Math. Soc Vol. 13, No. 1, 1976.

ON INJECTIVE RINGS

BY JAE-MYUNG CHUNG

1. Introduction

In [1] E. P. Armendariz and S. A. Steinberg concerned regular self-injective rings with a polynomial identity. Since the maximal quotient ring of a ring with zero singular ideal is von Neumann regular and self-injective, this paper investigates the structure of a biregular self-injective ring R by looking at its prime ideals, essential ideals or closed ideals. The reader is referred to [2] for the definitions and basic properties.

Throughout this paper we assume that R is a biregular self-injective ring with unit and C is the center of R.

2. Properties of R

PROPOSITION 1. Let A be an ideal of R. Then A is essential in R if and only if $Ann_l(A) = (0)$.

Proof. If A is essential in R and $x \in \operatorname{Ann}_{l}(A)$, then xA = (0). Assume $xR \neq (0)$. Then $xR \cap A \neq (0)$ and there is a nonzero element a in A such that a = xr for some $r \in R$. Since R is semprime and $aRa = xrRa \subseteq xA = (0)$, we have a = 0. This contradicts the fact that $a \neq 0$. Therefore xR = 0 and this yields that $\operatorname{Ann}_{l}(A) = (0)$. Conversely, if I is a nonzero right ideal of R, then $IA \neq (0)$. Since $IA \subset I \cap A$, A is essential in R.

PROPOSITION 2. If I is a nonzero right ideal of R, then $I \cap C \neq (0)$

Proof. Let x be a nonzero element of I. Then xR=eR for some central idempotent e since R is biregular. Hence $e \in I \cap C$.

PROPOSITION 3. Let I be an essential right ideal of R. Then I contains an essential two-sided ideal of R.

Proof, Let U be the largest two-sided ideal of R which is contained in I.

Jae-Myung Chung

Suppose U is not an essential ideal of R. Then $V = \operatorname{Ann}_{I}(U) \neq (0)$ and $(UV)^{2} = U(UV) V = (0)$. Since R is semiprime, UV = (0). Let W = VR. By proposition 2, $I \cap W \cap C$ contains a nonzero element w. Then $w \notin U$ and $U \subset U + wR \subseteq I$.

PROPOSITION 4. Let A be an ideal of R and J an ideal of C. Then (a) $(A \cap C)R=A$ and (b) $JR \cap C=J$.

Proof. For any $a \in A$, aR = eR for some central idempotent e. Since a = er for some $r \in R$, $a = er \in (A \cap C)R$ and this proves (a). Let $c \in JR \cap C$. Then $c = \sum j_k r_k$, $j_k \in J$, $r_k \in R$. Since C is regular, $\sum j_k C = eC$ for some idempotent e contained in J. Thus $c = ec \in J$ and (b) is proved.

PROPOSITION 5. Let P be an ideal of R and D an ideal of C. Then (a) P is prime in R if and only if $P \cap C$ is prime in C; (b) D is prime in C if and only if DR is prime in R.

Proof. (a) Suppose P is prime in R and E and F are ideals of C such that $EF \subseteq P \cap C$. Then $(ER)(FR) = (EF)R \subseteq (P \cap C)R = P$. Therefore $ER \subseteq P$ or $FR \subseteq P$ and this implies $E \subseteq P \cap C$ or $F \subseteq P \cap C$. Conversely, let A and B be ideals of R such that $AB \subseteq P$. Since $P \cap C$ is prime in C and since $(A \cap C)$ $(B \cap C) \subseteq AB \cap C \subseteq P \cap C$, $A \cap C \subseteq P \cap C$ or $B \cap C \subseteq P \cap C$. Hence $A \subseteq P$ or $B \subseteq P$. Similarly (b) can be proved.

PROPOSITION 6. Let A be an ideal of R and J an ideal of C. Then(a) A is closed in R if and only if $A \cap C$ is closed in C; (b) J is closed in C if and only if JR is closed in R.

Proof. Suppose $A \cap C$ is closed in C and B is an essential extension of A. For any $t \in B \cap C$ such that $t(B \cap C) \neq (0)$, there exists $a \in A$ such that a=tbor some $b \in B$ since $tB \cap A \neq (0)$. Since bR=eR for some central idepotent eof R, e=bs for some $s \in R$ and a=eu for some $u \in R$. Then $0 \neq as=te \in t(B \cap C) \cap (A \cap C)$ and this means that $B \cap C$ is an essential extension of $A \cap C$. Since $A \cap C$. is closed in C, $A \cap C=B \cap C$ and A=B. This proves that A is closed in R. Conversely let D be an essential extension of $A \cap C$. For any $t \in DR$ such that $tDR \neq (0)$, tDR=dDR for some $d \in D$ and $tDR \cap A \supset dD \cap$ $(A \cap C) \neq (0)$. Then DR is an essential extension of $A \cap C$ is closed in C. Similarly we can prove (b).

28

On injective rings

COROLLARY (a) A is essential in R if and ondly if $A \cap C$ is essential in C; (b) J is essential in C if and only if JR is essential in R.

We consider the set L(R) of closed ideals of R and the set L(C) of closed ideals of C. From proposition 4 and proposition 6, there is a 1-1 correspondence between L(R) and L(C) given by $A \rightarrow A \cap C$, $J \rightarrow JR$ where $A \in L(R)$ and $J \in L(C)$. Similarly there is a 1-1 correspondence between the essential ideals of R and the essential ideals of C, and there is a 1-1 correspondence between prime ideals of R and prime ideals of C. With an eye to the commutative theory, a biregular self-injective ring with unit can be characterized by the properties of closed, prime or essential ideals. Moreover a prime ideal in R is either essential or closed [3].

References

- [1] E. P. Armendariz and S. A. Steinberg, Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc. 190(1974), 158-173.
- [2] C. Faith, Lectures on injective modules and quotient rings, Springer-Verlag Lecture Notes, No. 49.
- [3] K. R. Goodearl, Prime ideals in regular self-injective rings, Can. J. Math. Vol. XXV, No. 4, 1973, 829-839.
- [4] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1964.
- [5] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

Seoul National University