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PL INVOLUTIONS OF 3-MANIFOLDS
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1. Introduction

My general purpose here is to present recent developments in the theory
of PL involutions of 3-manifolds. Later, I will point out drastic deviations
in high dim:nsional case. The presentation will be necessarily limited and in-
complete but I will try to make it coherent.

2. PL involutions of the 3-sphere and 3-space

2.0. If & is an involution of a space X, the fixed point set of % will be de-
noted by F(X, k) or simply by F(h). Suppose % is a PL involution of a fin-
ite complex K. Then it is not difficult to show that % is simplicial on some
subdivision of K. If A is a PL involution of a 3-manifold M, likewise there
exists a triangulation of M with respect to which A is simplicial.

2.1. Now let 2 be a PL involution of S% If F(h) is a 2-sphere, it is easy
to see that & is equivalent to the reflection of §° through ‘its equator. It is
known [30] that F(k) is an r-sphere, r=—1,0,1, or 2. Case r=-—1,0,1
had been unsolved until Livesay [24, 25] solved cases r=—1 and 0 in 1963.
In each of the cases r=—1 and 0, % is equivalent to the standard one. The
remaining case r=1 was finally solved by Waldhausen [37] in 1969.

2.2. Now let 2 be a PL involution of 3-space. The reason why this case
is not a corollary to the case of 83 is that the one point compactification of 2
need not be PL even though % is. According to Smith [307, of course F(k)
is an r-space, r=0,1 or 2. The case r=0 was solved by Livesay. The case
r=2 was solved by Harrold and Moise [4] who showed that if a 2-sphere
in 8% is locally tame except at a point, then at least one complementary do-
main has a 3-cell as closure. The case r=1 was finally solved by Kwun and
Tollefson [20] in 1973 who in fact show that if X is a closed 3-manifold
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and £ is an involution of X such that 2| X—a is equivalent to a PL involu-
tion, where a=F(k), then # itself is equivalent to a PL one. Thus there are
exactly three non-equivalent PL involutions of 3-space.

3. PL involutions of 3-manifolds

PL involutions of 3-manifolds in general had not been studied in depth until
recently mainly because there weren’t enough tools or techniques. By this
time, we have a proof of Dehn’s lemma [28], sphere theorem [38], the
fibering theorem [31] of Stallings, the product theorem [3] of E. Brown, the
‘uniqueness of connected sum [26], and Waldhausen theory [36].

Using results like these and/or others. PL involutions of many individual
"3-manifolds have been studied. For example, see [5,6,7,8,10,27,29, 13, 14,
‘15, 16, 32, 33, 341.

More recently, Tollefson [35] introduced a new technigue which was re-
fined and extended by himself and others, brought a new depth in analysing
PL involutions of 3-manifolds. I particularly mention the following two re-
sults.

Propuct THEOREM (Kim and Tollefson [117]) Lez S be a compact connected
and h a PL involution of SX[0,1] such that R(SX{0,1})=Sx{0,1}. Then
h is equivalent to some aXB, where a is an involution or the identity of S
and B{t) =1—t or t.

EXTENTION THEOREM (Kwun and Tollefson [22]) Let X be a compact 3-ma-
-nifold and b a PL involution of the interior X of X Then there exists one
and only one equivalent class of PL involutions of X whose restriciton to X

is equivalent to h.

The first theorem is clearly useful in studying PL involutions of SX [0,1]
and SXS!, for example, [11,21,22]. The second theorem is also very use-
ful. Until the extension theorem, PL involutions of such simple space as R?
XS8! could not be classified. Now we know there exists exactly seven non-
equivalent PL involutions. (Also see the mext sections. )

4. Tame fixed point sets

Now that PL involutions of many 3-manifolds can be completely analysed,
it would be nice to know when a given involution of a 3-manifold is equi-
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-valent to a PL one. This is answered by Kwun [19] for closed 3-manifolds.
The necessary and sufficient condition is that F(%) be tame. This result was
just recently extended to a quite general case by Kwun and Tollefson [23].
The last result implies that (1) if A is the set of points where F(&) fails to
be locally tame, then A has no isolated point and (2) an involution 2 of a
3-manifold (with or without boundary, compact or not) is equivalent to a
PL one if and only if F(h) is tame.

Then it follows that Bing’s examples [1, 2] of bad involutions of S® are
simplest possible.

5. Involutions of high dimensional manifolds

Involutions of high dimensional manifolds behave quite differently. For ex-
ample, for a closed #—manifold M, n>5, there are infinitely many non-equi-
valent PL involutions 2 of MX[0,1]1 such that A(MXQ)=MX0 and no
is equivalent to a product involution. (See [18]). Also using [18,19]. it was
shown [22] that the extension theorem in Section 3 also fails in two ways.
Some PL involution % of X (for a suitable & and X) is not equivalent to
the restriction of any PL involution of X and also for suitable 2 and X, it
is possible to find infinitely many non—-equivalent PL involutions A, %y, ...of X
such that k;|X are all equivalent to A.

Regarding Section 4, it is easy to have an isolated bad point in F(k) in
high dimensions,

6. Final remarks

There has been a question whether every closed 3-manifold admits an in-
volution. Tollefson first came up with a closed 3-manifold which admit no
PL homeomorphism of a finite period. Just recently, Raymond and Tollefson
-showed that the same manifold has no homeomorphism of a finite period of
any kind.

Kim and Tollefson found [12] a way to reduce involutions of many 3~
manifolds to involutions of simpler 3-manifolds.
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