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DUALIZATION OPERATORS ON P2X

By Pyune U PARK

1. Introduction.

The dual concepts of some mathematical notions are very important and
they provide useful and powerful way for mathematician. In this note, we
will study the dualization operators on the power set PX of a set X and P2X
of a set X. We will also study the relations between these operators and inves

tigate some examples and applications.
I1. Dualization operators.

Let X be a set and PX denote the power set of X. Define a map 4 on PX
into PX by d(4)=X—A. Let id : PX—>PX be the identity map. Then we
obvicusly have;

dod=id, idod=doid=d and idoid=id
We state this result formally;
LEMMA. ({d,id}, o), where o is the operation of composition of maps, forms
.a group.
Furthermore we have;

THEOREM 1. Let P2X denote the power set of PX of a set X. Define
id - PPX—>P2X by id(d) =A.
dy: PPX—>P2X by d,(A) ={AcCX| A€},
dy : P2X—P2X by do(Q) = {ACX|X—AsA).
d;: PPX—>P?X by d;(A) ={ACX|X—-A<Ed}.
Then ({id, dy, da, ds}, o) forms the Klein's four elements group, where the
«operation is given by the composition of maps.

Proof. The verification of the following table of operation are straightfo-
~ward from the definitions.
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o id dl d2 d3

id id dy d; ds

d d, id ds d»

dz dz d3 id d1

d3 d3 dz dl ld

Hence the result follows.

We shall call the maps in theorem 1 the dualization operators on P2X. The-
following are somewhat simple examples to which dualization operators are-
applied.

ExameLE 1. Let (X,d) be a proximity space, a <P?X an end in X and
a*c P?X a cluster in X. Then a*—=dsa.

Proof See [4], chapter 2(6. 11).

ExAMPLE 2. A filter ¥ on a set X is an ultrafilter iff JyU="7.
Proof. Let ¥ be an ultrafilter on X. Suppose that Acf. Then X— A& since
AN(X—A)=¢. Thus A€dsll, i.e., UCdsll. Conversely, if A=dyll then
X—A&U. Since X=(X—A)UA€l and ¥ is an ultrafilter, Ac. Thus-
dsU U so that U=dsU.
For sufficiency, let #=dsll and % be a filter. Then
AUBEl==AUBEdLll—=>X— (AUB)&ll=—>(X—A)N(X—B) el
= X-A&l=dl or X—B&U=dl
=AU or B,

ExAMPLE 3. Let X be a set and d<=P2X, Define

sec #={BCX|ANB+¢ for each Ac} €P2X and
stack 4= {BCX|ACB for some Acq} €P2X.
Then 1) sec #=ds(stack #) 2) stack # =ds(secA).
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Proof. 1) B& sec 4 iff 4 Aecd with BNA=¢
iff HA=4d with ACX—B
iff X~Be stackd
iff B& {BCX|X—B& stackd).
2) sec d=ds(stackd) = d;(secd) =ds?(stackd) =stackg.

III. Application of dualization operators.

The theory of contiguity structures on a set X has been introduced and stu
died by W.L. Terwilliger [5] and in an earlier, slightly different and more
complicated form by V.M. Ivanova and A.A. Ivanov [2]. The concept of
contiguity spaces is of central importance for the study of T,—compactification
of topological spaces. Terwilliger's axioms for contiguity structure on a set X

are as follows;

DEFINITION 1. Let ¢ be a collection of finite subsets of PX satisfying the
following axioms;

C1) if a finite collection & corefines &, i.e., for each A€ 4, there is BE
& such that BC A4, (in symbol, #< &) and £<¢ then dee.

C2) if 4 is finite collection with N@+¢ then dece.

C3) ¢#£e#P2X.

C1) if 4 and & are finite collections with A&¢ and £<e then AVA={A
UBIAed, Beh) &e.

C5) if 4 is a finite collection with c/. A= {cl.A| A€} Ee then d<e. Here
z&cllA iff {{z}, 4} €.
Then ¢ is called a contiguity structure on X and (X, ¢) a contiguity space.

We shall try to apply the dualization opsrators on the contiguity structure

¢ and obtain some logically equivalent axioms.

PROPOSITION 2. Let & be a collection of finite subsets of PX satisfying the
Sollowing conditions;

F 1) if B is a finite collection with A< and A<e then Ree'.

F 2) if d€e’ then NA=¢.

F 3) ¢+ +P2X.

F 4) if A€e’ and REe" then AN/B&e'.

F 5) if A€’ then {cl AlAcd) €6, where cl A={zeX|{A, {z}}&<]).
If we define A€’ iff A€e then ¢ is a contiguity structure on X.
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Proof. It is an immediate result of the definition.
Note that ¢’ =di¢ in the sense of theorem 1.

DEFINITION 2. Let ¢” be a collection of finite subsets of PX. Then ¢’ is ca-
lled a c—farness structure on X if it satisfies the above conditions.

CoROLLARY. Let(X,e) be a contiguity space. Then & =d& is a c-farness

structure on X.

PROPOSITION 3. Let p be a collection of finite subsets of PX satisfying the
Jollowing;

Ul) if A€y and d refines a finite collection R (in symbol, A <R) then B
2

U2) if A<y then UA=X

U3) ¢#u+PX.

U4) if A<y and BE u then ANB={ANB|AcA, BEL} = pu.

Us) if A€y then {Int, AlAcd} ey, where Int A= {zeX[{A, X—{z}}e
1. If we define dep iff (X—A|Acd} €’ then ¢’ is a c—farness structure
on X.

Proof. We shall prove that Ul) —U5) imply F1) —F5) respectively but it
it obvious that U2) implies F2) and U3) implies F3).

First assume that &£ is a finite collection such that 4<{& and 4<¢. Then
{X—-AlAedlep and {X—A|Acsd} <{X—-B|B €4£} and hence {X—B|B<c
Bl ey or Bee'.

Next assume that U4) holds, and let 4 and £ be finite collectons with #
€¢’ and B€e’. Then {X—AjlAcd} ey and {X—B}Bc & €. Hence

{X—-AlAe @ N{X—B|Be&} = {(X—A) N (X—B)|Acd, BE&}
={X—(AUB)|Aeqd, Be&)

belongs to gz by U4). Therefore A\/Bee'.

Finally, assume that U5) holds and #€¢’. Then {X—A|A=d} €4 and hen-
ce {Inm,(X—A)|Acdlcp by Us). Thus we have {X—Int,(X—A)|Aed}
={cl Al Acd} .

Note that g=ds’ =d>(d:e) =dse.

DEFINITION 3. Let ¢’ be a collection of finite subsets of PX. Then p is cal-
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led a c-uniform covering structure on X if it satisfies the above conditions.

COROLLARY. Let ¢’be a c~farness structure on X. Then p=dsx’ is a c—uniform
covering structure on X.

Proof. The proof can be done dually.

We can also introduce a merotopic structure y which is logically equivalent
with ¢, & and g by defining y={d|£Ustack #+¢ for each &ep}. The axioms
for a c—merotopic structure y will be as follows;

Let 4, & be finite collections. Then 7 satisfies

S1) A<&, A<y implies L=y,

S2) for all z€X, {{z}} ey

S3) ¢p#r+P2X.

S4) ARy implies 4y or Ly

S5) sec {clA| A=W} €7 implies sec A€y, where ¢l A= {z|sec{A, {z}} €7].

Actually 7 consists of all families of subsets of X which contains arbitrarily
small sets with respect to e(g).

In the study of contigual spaces, the contigual maps play so important ro-
les as the continuous maps in topological spaces. The following proposition
provides some alternative descriptions of contigual maps.

ProPOSITION 4. If f1 (X, &1)—> (Y, &) is a map between contigual spaces,
then the following are equivalent.

a) A<e implies f(A)Eey, i.e., [ is a contigual map.

b) deey implies f1(A) €&y

¢) A< ., implies f1(A) €p,,.

Proof. a)==>b) : Suppose f () &y, ie., LK) Ee. Then F(FIHDE
e by a). Since A<f(f1(H)), we have #ee, or A&,

b)==a) : Supposef(d) &ez, i.e., f(H)Ee’s. Then f(f(W))€EE by b).
Since fT1(f(#))<Hd, we have d<e’; by F1). Thus d&e;.

b)==c) : Let #€u,;,. Then {Y—A|AcH} ¢'s, and hence {f~1(V—A)]|
Aced}={X—f1A)|Aed} =y by b). Thus {f1(4A)|Aed} €y, -

c)==b) : Let d€¢’s. Then {Y—A|{A€A} Ep.,, and hence {/~1(Y—A)|A
et ={X-f1A) A€M Epa by o). Thus {f1(A)|AcA}ed.

If we restrict our attention to the concept of nearness of two sets, that is,
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5.={{A, B} YA, BCX, {A, B} ¢}, then we obtain the concept of Lodato
proximity on X. Applying the dualization operators on dz, we can also obtain
eorresponding equivalent axioms for Lodato proximity structure. But there
seems to be no need to mention about those because it can be done similarly.
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