The Adsorption of Amines on Silicates. Distinction Protonic and Aprotonic Acids Sites

Silicate 上에서의 아민의 吸着. Protonic 酸 자리와 Aprotonic 酸 자리의 區別

  • Kim Jong-Taik (Department of Applied Chemistry, Engineering College, Kyungpook Naional University) ;
  • Sohn Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook Naional University)
  • 김종택 (경북대학교 공과대학 공업화학과) ;
  • 손종락 (경북대학교 공과대학 산업화학과)
  • Published : 1976.12.30

Abstract

The infrared spectra obtained in the region of $4000∼1200 $cm^{-1}$ has been measured for pyridine, tertiary butylamine, and ethylenediamine adsorbed on various cation-exchanged silicates at various degassing temperature. It was possible to distinguish between protonic and aprotonic acid sites of all cation-exchanged silicates which exhibited both Bronsted and Lewis acidity. The sodium form appeared to be the least reactive towards adsorbates. The relative ratio of the band intensities of tertiary butylamine was directly related to the polarizing power of exchanged cations. Ethylenediamine was less easily desorbed from silicate surface than tertiary butylamine due to the additional amino group to react with surface active site, and probably to form ether hydrogen bond with surface oxgen by liberating migrating proton besides the coordination bond with Lewis acid site and the formation of$NH3^+$ species with Bronsted acid site.

여러가지 양이온이 교환된 silicate 상에 pyridine, tertiary butylamine, ethylenediamine을 흡착시켜 IR spectra를 4000 ∼ 1200 $cm^{-1}$의 범위에서 그리고 여러 다른 탈기온도에서 얻었다. 이 결과 protonic 산 자리와 aprotonic 산 자리를 구별할 수 있었으며 양이온이 교환된 모든 silicate는 Bronsted 산과 Lewis 산을 모두 나타내었다. 그리고$ Na^+$이온이 교환된 silicate가 adsorbate와의 반응성이 가장 적게 나타났다. Tertiary butylamine의 band intensity의 상대적인 비는 교환된 양이온의 polarizing power와 비례하고 두개의 amino group을 가지고 있는 ethylenediamine은 tertiary butylamine에 비해서 silicate 표면으로부터 쉽게 탈착되지 않았으며 또한 Lewis 산 자리와 coordination bond를 이루는 경우와 Bronsted 산 자리와 $NH3^+$ 종을 만드는 경우외에 migrating proton을 떼어 냄으로 말미암아 표면산소와의 수소결합을 이루는 경우가 조사되었다.

Keywords

References

  1. J. Amer. Chem. Soc. v.78 H. A. Benesi
  2. J. Phys. Chem. v.61 H. A. Benesi
  3. Ind. and Eng. Chem. v.49 A. N. Webb
  4. Anal. Chem. v.33 R. T. Barth;E. V. Ballou
  5. J. Phys. Chem. v.58 J. E. Mapes;R. R. Eischens
  6. J. Catal v.2 E. P. Parry
  7. J. Phys. Chem. v.69 J. J. Fripiat;A. Leonard;J. B. Uytterhoeven
  8. J. Phys. Chem. v.71 T. R. Hughes;H. M. White
  9. J. Phys. Chem. v.72 P. E. Eberly, Jr.
  10. J. Phys. Chem. v.68 M. R. Basila;T. R. Kantner;K. H. Rhee
  11. J. Korean Chem. Soc. v.19 J. T. Kim;J. R. Sohn
  12. Introduction to Infrared and Raman Spectroscopy N. B. Colthup;L. H. Daly;S. E. Wiberly
  13. J. Phys. Chem. v.70 M. R. Basila;T. R. Kantner
  14. Advanced Inorganic Chemistry F. A. Cotton;G. Wilkinson
  15. Bull. Soc. Chem. France J. J. Fripiat;A. Servais;A. Leonard
  16. The Infrared-spectra of Complex Molecules L.J. Bellamy