On Robustness of Response Surface Designs
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1. Introduction

This paper considers design aspects of response surface experiments in which
emphasis is on robust estimation of the response variable, y5(x), to wild or
‘aberrant’ observations. It is assumed that the response relationship is to be
approximated by a low order polynomial in one or more independent variables

7(X) =Bo+ T Bixi+ L B:Bixix;+ 3 BiBiBuxix kg 4o ee ¢))
As usual, the x’s are transformations of the experimental variables, the origin
of the x’s coinciding with the center of some region of interest, R, over
which the polynomial approximation is to be used. It is further convenient
to scale so that the region R may be described as a unit cube, — 1<z, <1, or
as a unit sphere, Xz%,<1.

The polynomial (1) may be written in matrix form

7(x) =x"3

in which x' is a row vector whose elements are the values of the independ-
ent variables, their squares, products, etc., and 8 is a column vector of the
coefficients associated with the elements of x'. Observations, y;(x) =7(x) +e;,
are taken at n selected combinations of the x variables, the set of such com-
binations being called the experimental design. The ¢; are assumed to be
uncorrelated random errors with zero means and constant variance, ¢2. Based
on some design in the space of the independent variables, the g's are
estimated by least squares

b=(X'X)"'1X'Y
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where X is the matrix of values of the elements of x' at the design points,
and Y is the nx 1 matrix of y observations.

Suppose that the ith observation has added to it an ‘aberration’ d;, making
it an outlier. For generality, consider a discrepancy vector, d=(dy,dzy >+, dr),
of non-random aberrations added to the Y vector. It is easily shown that,
by assuming T=(X'X)"'X’,

E®) =(X'X)XE(Y)
=(X'X)"'X'(Xg+d)
=8+1Td
and, for any arbitrary point x, the estimated response, y(x), has
E(§(x)) =E(x'b)
=x'(8+Td)
=y (x)+x'Td.
Therefore, the mean squared error, MSE, is
MSE (5 (x)) =E[3 (x) =7 (x) I*
=E[5®) —E(5)PHEG®) —n() T
=V(x) +B(x)
=x'Var(b)x+d'T"xx'Td
where V(x)=x'Var(d)x is the variance and B(x) —d'T'xx'Td is the squared bias
of y(x).

Since we are interested in using y(x) over the entire region of interest,
R, we will consider the integrated mean squared error, IMSE, under, a
weighting function W(x). Then

IMSE= f MSE (5 (x)) d W(x)
R

= [V d W) + [ B W)

=a*Tr[ (X' X)"'M]+d'T'MTd (2)
where M:J‘xx’d W(x) and Tr indicates trace. The weight function W(x)
R

can be treated as a probability distribution function on R. It allows for dif-

ferential importance of estimates of 7(x) at different points in the region
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and can even be specialized to a discrete set of points if desired,

In equation (2) it is clear that IMSE is the sum of the integrated variance
and the integrated squared bias d'T'MTd with the latter term being the
effect of the non-random discrepancies. Sensitivity of IMSE to a given dis-
crepancy vector d depends on the experimental design through the matrix
T"MT. Hence, robustness to wild observations can be achieved if & T'MTd

is made as small as possible for any given vector d,
2. Robustness of Design to Wild Observations

Let S=T'MT. Clearly, S is positive semi-definite since d'Sd is the inte-
grated bias. Robustness of IMSE to aberrant observations is achieved by
minimizing ¢'Sq. For a single discrepancy of magnitude g in the ith observa-
tion,

d'Sd=S$;;g?
where s, is the ith diagonal element of S. If we assume that the single dis-
crepancy of magnitude g, a'=(0,05-+» 0,80, -..,0), has equal probability of
occurring with any of the observations, than the average value of d'Sd is
Avg(d'Sd) =Avg[Tr d’'sd)]
=Avg[Tr(Sdd")]
=Tr[SAvg(dd')]
=Tr[S(g*/n) 1]
=(g%/n) Tr(S).
Thus Tr(S) should be minimized to achieve robustness of IMSE to an aberrant
observation, It is interesting to note that
Te(S)=Tr(T'M T) =Tr[(X'X)'M]
which is the integrated variance (apart from ¢2), Thus it appears that to

ensure insensitivity to an aberrant observation, the integrated variance should

be made small,

If there are two or more aberrant observations a similar conclusion can be
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deduced. Consider a general discrepancy vector, d'=(dy, dg, -+, dn). Then

d'Sd=Y Y sidid;

i=l j=1

A convenient measure of robustness might be

||M=

Since S is positive semi-definite, s%;<<si:S;;, and therefore,

Q<Z s 1;—{—22 Z SiiSii= (gls,-,)z

i=1lJj>i
=[Tr(8)1*
Thus @ is made small by making Tr(S) small, that is, By making the

integrated variance of y(x) small.

3. Discussion

The approach taken in this paper differs from that of Box and Draper [1]
primarily in that we consider integrated bias of §(x) over some region of
interest, R, as the basic quantity to be made insensitive to non-random
discrepancies. Box and Draper [1] concentrate on bias in $(x) at the design
points only. They propose that the sum of squares of diagonal elements of
the matrix X(X'X)-'X' should be made small, The basis of their criterion is
that Var(y(x)) at the Cesign pcints czn ke mzde as uniform as pessible if
the sum of squares of diagonal elements of X(X'X)"! is made small,

In general, the fitted equation §(x) in respcnse surface experiments is interd-
ed to be used not only at the design points tut within scme regicn of the x
space of interest to the experimenter, For enlightening references of respense
surface experiments, the readers may refer to Pox and Hunter [2], EBox and
Willson [3], and Myers [4].

If a criterion is to be developed based on insensitivity of the (%) to
akerrant observations, it seems more satisfactory to evaluate its performance

over the whole region than just over the design points only. From this
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viewpoint, the proposed criterion possesses a clear advantage over the Box

and Draper’s criterion,
4. Some Robust Two-Variable Designs

Suppose that for ‘a response surface experiment of two variables the second
order polynomial model is adequate over the region of interest, R. To illustrate
the application of the Tr(S) criterion, we consider a useful class of two-variable
designs with points equally spaced on one or two circles, and center points,
This class includes the 32 factorial, the central composite, the hexagon and
many other commonly known designs. We take the weight function, Wi(x),
to be constant and minimize Tr(S) either over a square region of interest,
e, Ri={(x1,x):—1<x1<{1, —1=<{x;=<C1}, or a unit circle region of interest,

i.e.,Ry={(x1,x2) :x%1+x2,<<1}. Recall that M:fxx'dW(x) and if we take
R

W(x) to be constant over the region, then

M=(1/4) [xx'dadx, if R=R;

Ry

=(1/n) [xx'dxdx, if R=R,,
Ra

We assume the experimental points are to be restricted to the region of
interest, R.

For a fixed n, the design parameters which can be varied in the minimiza-
tion are the number of points on each circle, the orientation angle of the
points on each circle with respect to the positive direction of the x;-axis,
the radii of the circles and the number of center points, ny, In the tables the
notation (ny, a1) + (nz, a2) is used to indicate the numbers of points and orien-
tation angles for the two circles with n; and ai always referring to the larger
circle, For example, from Table 1, with n=8 the optimum design has n;=4
points on an outer circle of radius ry= 4/2. These points are in the corners
of the square region (a1=7r/4). The design has n;=4 points on a second

circle of radius r,=0.794. These points are on the x;-axis and x,~axis with
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distance 0.794 from the origin. The design does not have center points

(70=0). The design is illustrated in Figure 1.

Figure 1. The Design (4, z/4)+ (4,0)with ri= 42 and r.=0.794

Table 1. Designs with 7(S) Minimized over Square Region R:

n Design ~ Mo 71 ra

6 (5, 7/20) 1 1,012

7 4, 7/4)+(2,0) 1 VZ 1

8 (4, w/4)+-(4,0) 0 e 0.794
9 (4, 7/4)+ (4, 0) 1 vZ 0. 906
10 4, 7/4)+(4,0) 2 V2 1
1 (4, 7/4)+(4,0) 3 V2 1

Table 2. Designs with 7(S) Minimized over Circular Region R:

3

Design 7o 71

(5,0)
(5,0)
(6,0)
(6,0)
10 7,0)
11 (8,0)

O 0 N
W W W N =
= b e e e

Inspection of Tables 1 and 2 indicates that the experimental points tend
to be located on the boundary of the experimental region though center

points seem to be necessary for most cases. By way of comparison with Box
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and Draper [1], their two-variable central composite design had 8 points
equally spaced on a circle and had ny=2. The n=10 design of Table 2 has
7 points on a circle and np=3. The n=11 design is a rotatable central com-
posite with ny=3. For the square region of interest, however, the designs of

Table 1 for n=10 and 11 are the traditional 3% factorials with added center

points.
SUMMARY

One of the important properties of a ‘good’ response surface design is that
the design should be insensitive to wild observations. In this note, a measure
of sensitivity to wild observations is studied. It is shown that designs are made
robust to wild observations by making Tr[(X'X)"'M] small where M is a
moment matrix over some region of interest. The proposed criterion is com-
pared with that suggested by Box and Draper [1]. Some robust two-variable

response surface designs are given.
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