The Cumulants of the Non-normal ¢ Distribution
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1. Introduction

The simplicity and usefulness of the Student’s “¢” defined in case of a
normally distributed sample is due to the independence of X and S.

However, in a variety of cases, it is necessary to test for the mean of a
population which does not come from normal distribution and X and S are
no longer independent.

Thus, the following question is of interest. If t;’, is the 100 p percentile
from the normal tabulated “t* and if ¢ is computed from non-normal
sample data, what is the true probability, i.e., prob [tf_tg] ?

A solution to this question consists of finding the cumulative distribution
function of the non-normal ¢, this is done with an Edgeworth series which
expresses F(t) in terms of the moments of the non-normal distribution.

Geary [7] furnished an expression for the first four moments of ¢ correct

to n-% with following way:

Let 1= 1/n Fy = «/n Fy
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using R.A. Fisher’s notation k; and K3, the population variance. In order

to find the first four moments of ¢ (from zero origin) the denominator is

expanded formally in power of L}—G}—{—z—, which is of the order n”*.

Then joint moments of & and k; are substituted with joint cumulants of

k, and k, and again joint cumulants are replaced by cumulants of the
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population according to the simple formulae which Fisher has provided.

Later Geary [7] gave the expansion to the terms in n-2 of the first six
cumulants L; of ¢ as follows.
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where 1;=K;/K%* and K; are the cumulants of the population.

A program for obtaining the first eight cumulants of ¢ in terms of the
population cumulants using Algebraic Manipulation Package [10] [12]
(ALMAP) of the University of Minnesota is established and Figure (1.1)
shows the flow chart of the procedure for generating the cumulants of # in
computer programming.

Notations for statistical variables in computer programming are made in such
a way that each notation is easy enough to read. Here the initial letter K

and M are adopted to represent the meaning of cumulant and moment

respectively.

2. Moments and Cumulants Recursion Equation

As shown in Figure 1 the procedure involves the conversion from

moments to cumulants and vice versa in univariate and bivariate case at

various stages.
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Figure 1. Flow Chart of the Procedure for Calculation

of the Cumulants of ¢
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Let m; be the jth moment of a random variable X and K; be the jth
cumulant of X.

R.A. Fisher (4] first developed expansion of m; in terms of K, i<j.
Later M.G. Kendall [9] developed more explicitly the approach used by Fisher.
The procedure for generating moments in terms of cumulants mentioned by
them is that of equating coefficients in the power series expansions of the

defining relationship between the respective generating functions, uiz.,
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M) =exp K(?).

From the same approach F.N. David and M.G. Kendall (3] developed the
expression of m; in terms of K; using tables which express the relationship
between two symmetric functions; the augmented monomial symmetric
function and the power sum function. The procedures for generating the
relationship between m; and Kj given by the above is not oriented toward
computer programming.

Another approach established by J.S. White [11] gives a recursion relation
more adapted to computer programming and the result is following.

In univariate case
i .
7nj+1:Kj+1+.zi<‘.]“Kj_i+1mi (2 1)
i=1yg
Equation (2.1) may also be used as a recursion relation for expressing K1

In terms of m;, <{j41.

Kj+1:mi+1—é(j.)]{j—i+1mi (2.2)

i=1

In bivariate case with

i 4
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0
where Y =q, > =0 and

where m;; is (4,7)th joint moment and K;; is (7,7)th joint cumulant of
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two different random variables. The corresponding expression for the joint
cumulant is obtained directly from (2.3) by solving for Ki,1,j:1.

Since zero subscripts are not allowed in programming in FORTRAN, some
care is required in programming. The univariate and bivariate recursions are
easily adapted to computer programming and the FORTRAN subroutine
VK2M, VM2K corresponding to (2.1) and (2.2) respectively and VK2M2
corresponding to (2.3) and VM2K2 are developed[8].

3. Cumulants of ¢

3-1 The Joint Moments of S1 and S2

Let X, X;(:=1,2,..-; N) be independent identically distributed random
variables with cumulants K;=KXI(?).
The moments of X, ie., my=MX1({) are derived from the cumulants of
X using the subroutine VK2ZM.
Now consider the joint distribution of X and X2
The joint moments of X and X2 are
MX12 (i,7) =E(Xi(X2))) =MX1(+2j) 3.h
Knowing MX12(i,j), subroutine VM2K2 yields the joint cumulants of X and
Xz, KX12 (4,)).
Let S1=Y X; and 8§2=3 X?, then the joint moment generating function
of (S1, 5§2) is
Mg, s2(,0) = E(evs:+957) = E(exX+oxs)¥

— (%05 = Ko sy ) (3.2)

Here Kj,,s.(u,0) is the joint cumulant generating function of (S1,52).
Thus Kjy, 52(u,0) = NKy, x*(4,0) (3.3)
Hence K812 (i,7) =NKXI12(i,5) 3.4

where KS12(7,j) is the joint cumulant of 1 and §2. The subroutine
VK2M2 yields the joint moment of S1 and §2, MS12(i,j).
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3-2 Product Cumulants of Sample Mean and Sample Variance

The sample variance is defined as X’:“Js;[—l:XB and the sample variance

is

rlr(o- ) 9

We also introduce N1=N-1, then the joint moment of SB and V are
MXBV(i,j) :E(XB)f(V)f:;Zd(j; ) MS12(2p+ij—p)  (3.6)
The subroutine VM2K2 gives the joint cumulant of XB and V, KXBV(,5)
from MXBV(j,7).
According to the semivariant property of the cumulants, the joint cumulants
of ¥/NXB and (V—1), KNXBV! (i,j) are obtained easily which are input
data of VK2M2 to calculate the joint moment of 4/ N XB and (V—1).

3-3 Moments of ¢ and Truncation in Computation

The moment of ¢, i.e., MT(i) in programming notation is an infinite series
of 1/N.

We limit our interest to the first eight moments of ¢ and to those terms
of degree less than or equal to 3 in 1/N.

The moment of ¢ is

MTG) :E(L/FT{_)"

;
:f("? )E( VN X)i(§2—1)i
o\ j
i -t
:Z( Z )E(NXB)%VI)J‘:Z( 2 )MNXBVI(:‘,J’)
J J
where MNXBV1(i,j) is the (i,7)th moment of N X and (§2—1).
In order to avoid unnecessary computation of any terms of MNXBV1(i,j)

which would generate terms of degree higher than 3 in 1/N is needed.



Hwang: Non-normal ¢ Distribution 97

First, the minimum degree of 1/N in KXBV(i,j) is easily defined if we
follow “the Rule 10” from Kendall [9] mentioned in Section 4 of chapter
3 and the formula K(127)=Kj,,’ provided by Fisher [4].

According to these rules

Miniw(K(11279))=i4j~1 from K(12))=K;, o'
Minl,‘,w(K(l"\Zf)):2z'+2j—2
Min,, . (KNXBV1(i,j)) =i+2j—2
where K (1%,27) is (i,5)th cumulant of sample mean and sample variance
and KNXBV1(i,j) is the (i,j)th cumulant of 4/n X and S2—1.

Second the degree of 1/N in MNXBV1 (i,j) is drawn from KNXBV1 (i,})
and the moment cumulant relation indicates that for each i/, i=1,2,..-,8
we need to include the first six terms of MXBV! (i,j) when { is an even
number and the first five terms of MNXBV1 (i,j) where i is an odd number
to meet our desired accuracy in 1/N.

With VM2K, MT(:) are converted to the cumulants of T, KT(?).

4. Results and Discussion

The first eight cumulants of ¢ are listed at table (4.1) in tabulated form.

As an example, the first cumulant of ¢ reads as follow.

1 1
KT(N)=—"  _ (—K)4+— o (—6K3+6K5— 15 KK,
() 2\/N( 3)+ 16(1/N)3( 346K 3K4)
1 3
— (—196K;—120K;5;—340 3K, +1120 K
, +256(JN)5( 3 5 3Ka+ 3

—80K7+280K3K6+420K4K5—945K3Ki)

It is noted that, to the approximation used, the expression involves only

the first eight cumulants of the population.

Computer output of moments of ¢ after being expressed in terms of degree
of freedom instead of the number of sample is in agreement with those from
standard normal population when any terms having positive exponent of K;

(:1=3,4, ..+, 8) are eliminated.
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Table 4.1. Cumulants of the Non-normal ¢ Tabulated Form
KT() KT(3) KT(5) KT(7)
1/2 1/16 1/256 1 1/8 1/64 2 1/32 1/8
\/N \/]‘\7**3 \/N**5 \/N ¢N**3 1/"1v=c<=|<5 \/N**3 «/N**E) VN**EJ
K3 —1 —6 —196; -2 —72 —2668] —60 -—24240 —45360
K5 6 —120 24 216 6 3600 5040
K3*K4 —15 —340 -30 2232 20 —3440 16800
K3**3 1120 —83 3118 —105 —21120 --108360
K7 —80 —240 —480 ~160
K3*K6 280 280, — 2480, —4368
K4*K5 420 840 —440 —2240
K3*K4**2 — 945 —945 5520 3360
K3**2*K5 4986 38880 46620
K3**3*K4 —8973 —50940 —2520
K3**5 —30609 —135135
KT(2) KT(4) KT(6) KT(8)
1/4 1/16 1/128 1 1/8 1/9 1 1/8 1
N N**2 N**3 N N**2 N**3l N**2 N**3 N#**¥3
1 8 96 2304 6 432 2928 240 34560 25200
K3%*2 7 —6 3468 12 600 4872 840 109080 141120
K4 —32 —256] -2 —144 —976| —120 -—17280 —16800
K3*K5 —90 3048 —504 —1176| —210 —45720 —40320
K3**2*K4 177 4860 648 11522 —150 103800 —8400
K3**4 —9680 699  —9942, 1200 34020 244440
K6 512 32 288 16 3456 2688
K4**2 —768 —48 —912 —7680 —1400
K3*K7 984 944 5736 1568
K5**2 750 732 4740, 1680
K3*K4*K5 —7380 —5310 —9300! 12040
K3**7*K6 —2420 —1140 9780 15120
K3**2%K4**2 10935 5175 —25290 —21840
K4*K6 256 768 —560
K3**¥3*K5 —9576 — 198540 — 158760
K3**4*K4 16461 263700, 65940
K8 —48 —384 —132
K4**3 —240 560
K3**6 103245 282240

In KT (2), add 1.



Hwang:Non-normal ¢ Distribution 99

The interest thing is the third term of the sixth cumulant by Geary [7]

is 577.5 Rz while the coefficient of R; in the computer result shows 840.

ABSTRACT

The use of the statistic t= y/ n (x-)/S, where X=Y Xi/n, p=E(X)), S?=
Y (Xi-X)2/(n-1) in statistical inference is usually done under the assumption
of normality of the population. If the population is not normally distributed
the tabulated values of student ¢ are no longer valid.

The moments of ¢ are obtained as a power series in 1/ 4/ 7 whose coefficients
are functions of the cumulants of X. The cumulants are obtained from the
moments in the usual manner. The first eight cumulants of ¢ are given up
to terms of order 1/n3, These results extend those of Geary [7] who gave

the first six cumulants of ¢ to order 1/n2,
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