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1. Introduction

The techniques about the analysis of variance for quantitative variables
have been well-developed. But when the variable is categorical, we must
switch to a completely different set of varied techniques. R.J. Light and
B. H. Margolin[1] presented one kind of techniques for categorical data in
their paper, where there are G unordered experimental groups and / unorder-
ed response categories.

This note is an extension of one of the technique to a two-way table, where
there are I unordered response categories, J unordered experimental levels
crossed by another K unordered experimental levels, with unequal size of
observations in each of JK cells. For terminology and notation, we follow[1].

For n responses, each in one and only one of I possible categories, the
data can be summarized with a vector @ of category counts @=(ny,--, nr),

where n; is the number of responses in the ith category, :=1,..., I, so that

I
S'n;=n. Then the variation of these responses is:
i=1

1 y ~ 1 .2 z 2
e [T )=t — 2 n?]
2n i Zn i=1
To further motivate this definition of variation, we need the following
known lemmas[1]:

Lemma 1 The variation of n categorical responses is minimized if and

only if they all ‘belong. to the same category.
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Lemma 2 The variation of n responses, where n=IS+L, 0<<L<I, is
maximized for any vector @ of category counts such that L counts equal

S+1, and I—L counts equal S.
2. The Model and Variation Components

We construct the two-way table where there are I unordered response
categories, J unordered experimental levels crossed by another K unordered
experimental levels with an unequal size of observations in each JK cells.
Each response is in one and only one of the I categories. Denote the number
of responses in category ¢, jth level (of the second index), kth level (of the
third index) by 7.

We assume that responses in different cells are stochastically independent,
and that each cell’s responses (nij, 72j,+-n1;:) follow a multinomial law:

) T
Pr(nuh,"',nxik)=< ik ) TI(piis) 7

Nijky **sMN1ik/ i=m1

I
where __Xlip;;k:L P >0, i=1,---,I j=1,.--,J, and k=1, .- K

If we let

V= (72111,71211,'",nzu,mzl,ﬂzzl,"',71121,"',nu\,nzn,"',71111,72112,7!212,"',nnz,'“,ﬂux,ﬂzuc,”'

,nIJK)')

Then,

EWV)=Y= (71-11P111,7l.11P211,“',71.11P111."',n.n,bxn,n.npzn,"',?LnPul,n-12P112, n.azpz12,
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where
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and & denotes the direct sum operation (see[2]).

With the two-way table introduced as our model we define the following

variations:

The total variation in the response variable (TSS) is
TSS:n/2——ém..2/2n;
i=1
the within-2nd index level variation (WSS;) is
J 1
WSS1=3, (n.5./2— Y ni;.%/2n.;.)
i=t i1

the between-2nd index level variation (BSS;) is
BSS, =TSS5~ WS5;;

the within-3rd index level variation (WSS;) is
K 1
\VSSz:f‘:L(n..k/Z—)_:ni.l.z/Zn..b);
= i=l

the between-3rd index level variation (BSS,) is
BSS;=TSS—~WSS;;

the within-cell variation (WSS;) is

WSSi=E % (ni4/2— St/ 2m00)

==
the between-cell variation (BSS;) is
BSS; =TSS—WSSs;
where
X
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3. Definitions

Definition 1 The interaction between the 2nd index level and the 3rd
index level is defined as I=BSS;—BSS,—BSS,. ‘

Definition 2 () is the space where I=0.

Definition 3 p; is the probability of an element belonging to ith category.
pi;- is the probability of an element belonging to ith category and ith levei,
regardless of the 3rd index level. pix is the probability of an element
belonging to ith category and kth level, regardless of the 2nd index level.

Definition 4 The hypothesis H; is ;. =p; for all j. The hypothesis H, is
pir=p: for all k. The hypothesis H; is pip=4p: for all j and £

4, Testing of the Hypothesis

Theorem 4-1 (a) Under the hypothesis Hj,
(n—1) (I—-1)BSS,;/TSS
is asymptotically approximated as y2(I—1)(J—1).
(b) Under the hypothesis Hs,
(n—1) (I—1)BSS;/TSS
is asymptotically approximated as y?(I—1)(K—1).

Proof The above facts can be proved as in the case of one-way table (see
[17). To prove (a), since there are I categories and J levels the degree of
freedom is (7—1)(—1). (b) can be proved in the similar way.

Theorem 4-2 With large n.jy=n.;.n..;,/n for all j,k, BSS; and BSS; are
asymptotically independent under the hypothesis H.

Proof With large n.;;, V is asymptotically multivariate normal, i.e.,

V~N(Y,Z). Under the hypothesis Hs, Z can be reduced as
Z—‘—Zu@Zzl@'"@‘Zjia@"’@ZJK:

where
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where U, is a rXr matrix of ones, I, is a » X r identity matrix, X, is a
I xr matrix of ones, and Y, is a rx![ matrix of ones.

Then
TSS=5+V'TV, WSSi=5+V'AWA'V,

W552:§+V'BWZB'V, BSS,=V'(T—AW,4)V,
BSSz =V’ (T—-B WzBl) V,

Now to prove that BSS; and BSS; are independent, it suffices to show that

(T—-AWAYZ(T—BW:B")=0

(see(3)).
AW A =— 2171 [U,@( o FOSNaRL 1,)]
i {0 1)o (00 oo (06 L 1)

(T—AW\ANYZ(T-BW,B") =YX (exy),
XZI: 21 ".)IJ) and Y:1, 2, "';IJK'
Here
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where

s=x-1 X-1 ], N e

I 1
X—1
S e
Since n.;p=n.;n..x/n for all j, k,LGL:n, i.e.,
oM.y

exyr=0 for all X,Y.
Therefore, BSS, and BSS; are asymptotically independent.
Theorem 4-3 With large n.;, in the space , and under the hypotheses
H,,H,, and Hs,
(n—1) (1—1)BSS;/TSS
is approximated as y?(I—1)(J—1+K—1).
Proof If I=0, then BSS;=BSS;+ES3, Hence,

(n—1)(I—1)BSS; _ (n—1)(I—1)BSS;+ (n—1) (I—1)BSS;
TSS - TSS

With large n.;, and under the hypotheses H; and Ho, the distributions of
(n—1)(1—1)BSS,; (n—1) (J—1)BSS,
TSS and TSS
12(I—1)(J—1) and y2(I—1)(K—1) respectively. With large 7. and under

are approximated as

the hypothesis s, BSS; and BSS; are asymptotically independent. So (n—1)
(I—1)BSS;/TSS is approximated as y2(I—1) (J—1+K—1).
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