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Numerical Investigation on the Role of Maruo’s Line Integral Term
for the Improvement of Michell’s Wave Resistance Calculations

by

Hang Shoon Choi*

In the present paper author has investigated numerically on some properties of Maruo’s line

integral term associated with the wave resistance theory. The role of Maruo’s line integral term

for the improvement of Michell’s wave resistance calculations are discussed.

By applying Green’s theorem over a closed surlace
with linear wave elevation, it was shown in a paper
of Eggers and Choi (1975, Appendix B) that within
consistent second-order theory, there is no line integral
term in the expression of a velocity poténtial for a
surface-piercing ship.

In the work of Maruo (1966), however, a line

integral term appears with source density lim ¢™Mz/k,
z™o0

along waterlinc as a part of second-order potential.
This term may be considered as a necessary correction
to the Michell’s source potential due to change of
wetted hull area. But this line integral term is already
inherent in the centerplanc source distribution of
second-order and just the same term, but with opposite
sign, has to be included in compense to transfer the
free surface boundary condition to the undisturbed
free surface. Thus at the end stage we get no line
integrals.

Nevertheless the Maruo’s line integral contains some
interesting properties. The output of its source distri-
bution balances the upward flow inside the waterplane
which results from non-zero total output of sources
distributed over wetted hull up to the undisturbed
free surface, if the body boundary condition holds
exactly and at the same time if the free surface
boundary condition is made linearized (i.c. for a
Neumann-Kelvin problem).

The Lagally force on this source distribution corrc-
sponds to the momentum flux in direction of ship’s
motion over the wave profile arca and mounts to the
difference between resistance from far-field waves and
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that {rom pressure inlegration over wetted hull up to
z=0, if there is no flow through the hull(see Eggers,
1975).

The Maruo’s line integral may be expressed in the

form,

1
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where ¢ is the first-order Michell’s potential, f
(x,z) the hull equation, G Havelock’s source potential
with output —4z and e is the ratio of ship’s beam to
its length. All length variables are made dimensionless
with ship’s half length as unity.

Then the contribution from this line integral to
wave resistance may be obtained by Lagally theorem
(i.e. minus the Lagally force on the source distribu-
tion),
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In principle, this procedure can be performed succ-
essively by using an iteration formula for expression

of Im,

(,,J(n):._

1 x(n~1) >
Ak, §¢ Gdy, n>2

where the line integral should be performed counter-
clockwise if ship moves in -+x direction and @ is
the first-order Minchell potential.

It was also shown in Eggers (1975) that the next

approximation of the contribution to wave resistance

becomes
1
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and that the order of magnitude of these forces is

R (1) =0(<2), R(ﬁ) —0(<2 210g$) ......

where <Cis some proper smallness parameter and &
is the beamlength ration.

As shown above R is formally small enough that

we stop the procedure at this stage and sum up as
follows,

RM R(l) (2)+0(<2$3)

A numerical example for Weinblum-Kendrick-Todd
plank shows that this resistance component oscillates
synchronously with that of Michell’s integral and R}?
is actually small except high speed range (Eggers,
1975). The aim of this numerical investigation for
other mathematical models is to confirm this trend
and also to examine whether this wave resistance
component improve the Michell’s one with the residual
resistance as reference.

For this purpose, we selected four simple models

for which experimental work is alrcady done.

Table of Models

Model [ §=B/L| 2T/L

f(x,2)

Weinblum- 1—(z—p)%/ (1—p)?
If,gggr“k i0-0265 0-286 | 9p=parallel middle body
Sharma “EB&[ s 1
Wiy 0.1 (0135 | (=aA=G/T)
Shearer ‘i 0.09375i 0.125 | ATLERAD 2z")
%&%8;2 {T 0. 09375;0 125 77(717—2x2+x4)(1—(z/T)2)

With these models we can see variance of beam-
length ratio from 0.0265 to 0.1 and of draft from

7.125 to 0.3,

of waterline-parabolic with or without

parallel middle body, quadratic-and also of cross sect-

ion-rectangle, parabolic.

The data of residual resistance are taken from

Weinblum-Kendrick-Todd (1952),

Sharma (1969),

information given courteously of Kajitani and Shearer

(1950), respectively. For all cases trim was not allo-

wed.

In general,

the contribution from Maruo’s line

integral to wave resistance narrows the discrepancy
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between residual and Michell result.

Michell result gives in general more values at humps
and smaller at hollows than the residual resistance,
it was corrected to some extent by adding Ra (espec-
ially see Figure for Weinblum-Kendrick-Todd plank
at Froude numbers 0.275, 0.313 and 0. 362).

One wholly different case is the Wigley model, in
which the Maruo’s integral gives too much contribut-
ions compared to the residual resistance. For reference
the total pressure resistance taken from Shearer and
Cross(1965) is also shown.

On the other hand R} alone should be equal to
the difference between resistance from far-field waves
and that from pressure integration over up to 2=
with error of 0(<3), if the body boundary condition
is satished exactly, Thus the differance between resis-
tance from far-field waves and that from pressure
integration up to z=0 plus R} is a measure of acc-
uracy of boundary condition on the hull. For Weinbl-
um-Kendrick-Todd and Sharma’s model this calculation

is performed.
References

Eggers, K.W.H.; On the role of line integral terms for
the improvement of wave resistance calculations.
Contribution to the report of the resistance, 14th
ITTC Ottawa, 1975,

Eggers, K.W.H. and Choi, H.S.; On the calculation of

stationary ship flow components. 1s¢ Intern.
Conf. Numer. Ship Hydyrodyn. Gaitherburg,
1975,

Maruo, H. A. Note on the higher order theory of thin
ships. Bull. Fac. Eng. Yokohama Nat. Univ.,
vol. 15, 1966, pp. 1-21.

Sharma, S.D.; Some results concerning the wavemaking
of a thin ship. Journ. Ship Res., vol. 13, 1969,
pp. 72-81.

Shearer,].R.; A preliminary investigation of the discr-
epancies between the calculated and measured
wavemaking of hull forms. North-East Coast Inst.
Eng. Shipbld. Trans., vol. 67, 1950—51, pp.
43-68.

Shearer, J.R. and Cross, J.J.; The experimental deter-

mination of the components of ship resistance



Vol. 13, No. 3, September, 1976

for a mathematical model. Trans. Inst. Naval
Arch., vol. 107, 1965, pp. 459-473.

Weinblum, G.P., Kendrick, J.J. and Todd, M.A.; Inv-
estigation of wave effects produced by a thin
body-TMB model 4125. DTMB report 840,
1952,

for Weinblum-Kendrick-Todd plank

Fn ‘ 0.236g0.26f‘0.289 0.316] 0.378 0.408] 0.5
@ | 0.957 0.899 0.997] 0.986| 0.925 0.950| 0. 985
@ | 0.998 1.089 1.019| 0.933| 1.033) 1.060] 0.968

tong
midilte hudy
ectamuular craw section
) N X ) T
o2 03 04 05 06 o7
3
4ﬁC”0
S
P
30
20

Sharma's Thin Model
R/AL=005"21/L=0 3

1.0} paraholic waterplane
reetangular eross seetinn
Tn
& 35 5% 63 06 o7
t
R R Wigley Model
Tipvn Byl=n 1 2E/T-5 123
parabolic waterling
08 purabalic eroes « ction
o4
03
»
021
0.
s tulal pressure pesistanes feom shearer and Cross v
a

02 a3 0.4

- P e

23
. phull
W Rpressure/Rfar-ﬁeld
. hull )
@: (R pressure_'—R‘} )/Rfar-ﬁeld
for Sharma’s thin model
0.5 0.709

(=

Fn i‘o.zse‘o.zsa 0.316) 0.365 0.447
@ | 0.903 0.790| 0.865 0.961 1.020| 0.982/ 0.983
I 1.061 1.205i1.012 1.197) 0.994| 0.904 0.886

D),

@

14t

©=oise RV
2 /:_"/., .
1.0/
[eX:5
06 Shearers Modd 202

Wleooma7s, 2T/L=0 125
044 Y2y =d =1 202X (1~ (Z/D)
02
T'n
3 o e 05 os -
. P
- td
1.6 ©;::4::R/;n\f‘ /’ A
/ —
14 /I T
1.2 ! /
//
.01 % /
1
o8 Shearvr's Model 5012
/1= 87z, 2T/L=0125
06 ¥ oxm 1 AV HEY
0.4
0.2
Fu .
oz 03 o) 05 o8




