<Research Paper)

Journal of the Korean Institute
of Industrial Engineers
Vol. 7 No.2 December 1975

An Improved Branch-and-Bound Algorithm
for Scheduling Jobs on Identical Machines

Sung Hyun Park®

Abstraet

In an earlier paper (‘Scheduling Jobs on a Number of Identical Machines’ by Elmaghraby
and Park, March 1974, AIIE Transactions) 2 branch-and-bound algorithm was developed
for the sequencing problem when all jobs are available to process at time zero and are
independet (i.e., there are not a priori precedence relationships among jobs.}. However, the
amount of computation required by the algorithm was mot considered to be short if more
than 50 jobs were processed. As an effort {o improve the algorithm, the present paper mod-
ifies the implicit enumeration procedure in the algorithm so that moderately large problems

can be treated with what appears to be a short computational time. Mainly this paper is

concerned with improving the lower bound in the implicit enumeration procedure. The

computational experiences with this new branch-and-bound algorithm are given.

1. Introduction

The problem to be discussed in this paper
is that of finding a schedule of N jobs
(tasks, activities, etc.) on M identical ma-
chines (processors, facilities, etc.} in a one-
stage production process. Let L; denote the
lateness of job j, defined as

Ly=max (O; T;—d;)
where d; is the due date of job j and T, is
the time of completion for the particular
schedule being evaluated. Then the objective
is to minimize the total penalty cost of

lateriess of jobs as measured by
N
22piL;
=1
where p; is the penalty per unit time of
-lateness in job j.

The probiem of tequencing N jobs on M

identical machines in a single stage produ-

* Mississippi State University

ction process arises guite often in various
activities of everyday life, for instance: in

hospitals {e.g., the sequencing of patients

" on identical test facilities), in grocery stores

{e.g., the sequencing .of customers on cle-

-rks), in manufacturing shops{e.g., the s=q-

nencing of items on lathes), and others,
For the sequencing problem the following

assumptions arz usually made, and, unless

otherwise stated, are sssumed in the remain-
der of this paper,

(1) Set-up and processing times are inde-
pendent of ;hé order in which the jobs
are scheduled, and the setup times are
included in the processing times.

(2) Each machine begins operation at
time zero and operates without idle time
on one job at a time, until all jobs assigned
to it are complréetgd. _

{3) Each job, once started, must be perf-
ormed to completion (no job cancellation).

The probl_éms of scheduling jobs on ma-

74

chines in parallel have been ireated by seve-
ral authors. Notable among these are the pa-
pers by Arthanari & Ramamurthy (2], East
man, Even & Isaacs (4], Elmaghraby & Park
(6], MeNaughton (8], Nabeshima(9,107,
Park[11], Root{137 and Rothkopf(14], Ref-
erences(6) and{113 are particularly relevant
to this discussion simply because this is
an improved version of the branch-and-bound
algorithm developed in the references. Other
authors have shown interest in the problem
indirectly by their papers on the problem
of project planning under constrained re-
sources; see, e.g., the papers of Elmaghraby
(51, Mason & Moodie[7], Pritsker, Watters
& Wolfe[12) and Schiage[15].

2. Theoretical Background

As mentioned earlier, this paper is con-
cerned with an improved lower bound for
the algorithm presented in [6)]. Therefore,
in order to discuss a modified method, the
previous one should be explained. The
following is a brief sketch of the theoretical
developments appearing in the paper(6} on
which the algorithm is theoretically based.
The proofs are not given here. The inter-

ested readers may consult reference(8].
Let

i : processing time for job i,
d; : due time for job i,
B : penalty per unit time of

lateness in job i,

ry ¢ ¢/, the ratio of process-
ing time to the penalty
rate,

@:(i,7, 1)t a sequence in which job {
is first, job j next...,and
job v last,

@a 2 {my, Ma,ev e, M) A SEQUENCE
of 2 jobs on machine
m=1,2,++,M,

subscript m;: the jth job on machine m,

5 : start time of job 4,
T; : time of completion of job
i in a given sequence.
The following particular assumptions are
introduced and theoretical developments

hased on these assumptions are presented.

Assumptions

1. d; =t; for job j, i.e., each job is allo
wad only its processing time before incurring
penalty.

2. The jobs are numbhered in order of
nondecreasing ratios of r;; breaking ties by
placing the job with the smaller #; first.
Therefore i<’j implies r;<r;. This order
will be referred to as the ‘natural ordering’
of the jobs.

From assumption 1 the penalty function
for job j becomss
pili=p; max (O; T;—dy) =p;(T;—15).

.
Since the objective function, 3 #;(T;—1;),
=1

is nondecreasing for T;, a sequence produ-
ces a cchedule in which all jobs start as
early as possible for the given sequence.
Therefore, if there exists an optimal sched-
ule in which no job is split(Lemma 1),
it is sufficient to examine at most N! diffe-
rent sequznces in the search for an optimal
solution.

Lemma 1: If d,=; for all j{assumption 1),
there exists an optimal schedule in which
no job is split between two or more machi-
nes.

Lemma 2: If M=1(ie., if there is only
one machine available), an optimal schedule
is Q:(1,2,+++,N). That is, the jobs are
ranked in ascending value of the ratios
/P

Corollary 1: For a schedule Q to be opti-
mal, it is necessary for Qa:(my, my, ¢ v+, ms)
to be sequenced in the order of rmi<7miv,

- <k, where % jobs are scheduled on ma-

chine 7.

Corollary 2 : There exists an optimal
achedule in which joB 1 is scheduled first,
Lemma 3: For a schedule @ to be oplimal,
it is necessary that T,>S;, for every pair
of machines {and j, where T, is the comp-
letion time of last job v on machine 7 and
S;, is the start time of last job » on machine
J-
Theorem 1: If #,<¢; and p;>#; then job {
precedes job 7 in an optimal schedule.
Corollary 3: If p;=p, for all j where p; is
an constant, then there exists an optimal
schedule in which jobs are assigned in their
‘natural order’ from machine 1 to machine
M in rotation.
Theorem 2: An optimal scheduls on two
machines is s.t. job B precedes job &, if
the following two conditions are satisfied:
() r3<ras and ry_(<ra(note the strict
inequality)

A1 N
{ii) E;:!‘EH_ (1/2)maix t--> ¢, wWhere
i= i i=k

H=3_t/M.

Corollary 4: In the case of M>3 machines,
an optimal schedule is s.t. job 2 precedes
job % if the following two conditions are
satisfied:

(i) ra<lrre and e <1

(ii) i;tigH—m%xtf~%rf,

We have introduced important results on

job orderings in an optimal schedule. In
order to make these results clear, an illust-
ration is given below.
Example 1: Suppcse we are given jobs
with following #; and p; for each job i
Assuming M=2, find some possible job
ordering for an optimal schedule.

Dotat jeb 1 2 3 4 5§ & 7

t 4 3 3 3 41 2
pi12 8°7 4 5 1 1°

75

Notice that the jobs are already numbered
by increasing #;/#; ratios, For this small
size of problem, if we enumerate explicitly,
there are 71(i.e.,5040) sequences'to be exa-
mined. We want to show how Corollary 2,
Theorem 1 and 2 work to reduce the com-
putational effort.

Corollary 2: shows job 1 precedes all
other jobs in an optimal
schedule,

Theorem 1: shows that job 1 precedes
job 5 (because ¢, <ts and
p.>ps), Jjob 2 precedes
jobs 3,4, and 5, job 3
precedes jobs 4 and 5, and
job 6 precedes job 7.

Theorem 2: A more detailed expla-
nation may be necessary
for this theorem. Let us
pick up job 2 and job 6
arbitrarily, and test whe-
ther the two conditions are
satisfied.

i) r.=38/8<rs=38/7 and
rs=4/8<re=1
(i) t;=4<10-2-3=5
Both two conditions are
satisfied. Therefore, job 2
precedes job 6 in an optimal
schedule. By the same
procedure, we can also
find that job 1 precedes
jobs 5,6,7 and job 2 pre-
cedes job 7.
Combining the above informations on optimal
ordering, we can find the following network-
type precedence relationships among jobs.

Figure 1: Precedence Relations

76

‘The above precedences. raduce the number
of sequences that must be considered 1o
“only 20(a reduction of over 99%) sequences.
We have investigated precedence relations
among the jobs so that it is not ngéessary
to szarch or an optimal schedule over all
possible schedules, but only over a subset
of the schedules. Further reduction of com-
putaticnal effort may result from the appl-
ication of the branch-and-bound technique
which will be described below.

3. Iir:plicit Enumeration
Procedure

We do not elaborate here on the princi-
ples of implicit enumeration by branch-and-
bound methods The interested reader may
wish to consult Agin [1%, but briefly
state two basic concepts of the method:
one is that all feasible sequences must be
accounted for either explicitly or implicitly,
and the other is that the least number of
sequences should be accounted for explicitly.
The gist of the approach presented below
is o try 1o limit the explicitly enumerated
nodes by precedence relations and bounding
arguments. Define a “partial schedule” 1o
be a specification of the start times of a
subset of the jobs which have been sched-
uled on the machines. Let a “partial per-
mutation” denote a partial sequence (ie., a
permutation of some subset of the jobs 1, 2,
«++,N). We define a partial schedule to be
“eligible” if there does not exist a job
which can be started earlier without chan-
ging the start times of some others in the
partial schedule. Similarly, a partial perm-
utation is “eligible”, if job i precedes job
J({from Corollary 2, Theorems 1 and 2,
and j does not appear before : in the
partial permutation. Schrage[15] shows that
there is a one-tc-one correspondence between

an eligible partial schedule (=-p.s.) and an
eligible partial . parmutation(e.p.p.). Also
define an e.p.p. to bz “redundant” if there

exist two jobs ¢ and j such that job i

appears before job 7 in the e.p.p.; howsver,

“when jobs are scheduled as they appear in

the permutation, then either s,>>s; or 5=%;
and i>j. Schrage chserves that “redundant
e.p.p. need not be considared in the enum-
eration process®, which plays a role in

eliminating partial permutations. We will

"take advantage of his statement to reduce

the number of sequences which must be
accounted for. However, the major rolss in
such reduction come from the bounding
procedure by uppsr and lower bounds.

Upper Bound

The total cost of lateness for any comp-
lete schedulz can be an upper bound. If wz
know a reasonably good upper bound on
the optimal value in the midst of thz tree
generation process, it will be very wsaful
because any e.p.p. whose lower bound is
graater or equal to the upper bound can be
discarded, For the tree generativn we uss
backtracking instead of jumptracking, There
fore, we get an upper bound on the opti-
mal value as soon as we obtain a complate
schedule with an associated total cost. [t is
quite possible that one obtains a better
upper bound as one proceeds further in the
tree generation. In this case, the [atter
bound replaces the former. This process for
generating an upper bound is one advantage
of the backtracking process, besides saving
merrory space in the computer.
Lower Beund

This is the major part of improvement
as compared with the previous paper (6).
Suppose we want to evaluate the lower
bound on the optimal value for an e.p.p.,
Py =(J(1), 4(2), -+, J(B)) where J({)

denotes the. job in position i i=1,2, ++, 4.

P(%) irdicates ¢n eligible partial permutati-

on whose order is J(1),J(2), -+ +J(%). The
lower ‘bound for P{%) is obtained as
follows.

lower bound; LB(P(#)) =1 27 Ts—d1)

FepiR)

+T, y_zté}_’(kf?rl' max (0; Cyy-o/M

Py (M—1)/(2M)) i, 63
where (N) : set of all ¥ jobs,

.2 bi;
PN—& * e INY—plR) ;

Cron-r : cost of processing (N)—
P(%) jobs in their natural
order on a single machine,

T: : (min Ty 7 is-the last job

on each machine),

Proof: The first term in the right hand
side of the above equation is the cost incu-
rred in scheduling the 2 jobs in P(®) and
the last two terms zrise from the consider-
ation of the unscheduled jobs. The second
term is self-evident, but the last term needs
explanation. We derive the last term from
Eastman, Even and Isracs’ result(4] on
bounds for the optimal scheduling of N
jobs on M prccessors, They prove that

Cuan—Py/22 (C' L,y —Py/2) /M - (2)

where Py

N
: § bit;
C’y.w ¢ cost of processing N jobs on
M meachines where d;=0 for
all j,
€’y i cost of processing N jobs in
naturzal order ¢n a single ma-
. chine where d;=0 for all ;.
Their resuit is directly applicable to our
model, since we assume d;=¢; for all j,
that is, T;>dfor =} 7. Therefors,
Cyow=Cuar,n+ Py .
C u=Crx+ Py
and inequality (2) implies that
Cysw+ Py—Py/2> (Ci,n+ Ps—Pu/2) /M
~——Cux+ Pu/22 (Coon+ Pu/2) /M
——Cu,x2Chn/ M— Py (M—1}/ (2M),

77

Hence, the third term for the lower bound
of P{k) becomes

Cow-a/ M—Pu_s(M—1)/(2M).
If M is very close o or equal to ¥, which
are trivial cases, it inight be possible to
have

Crow-s/ M Pys (M—1)/ (2M).
So, we write the third term as

max{0; Cpu_a/M—Py_s (M—1)/(20),
Q.E.D.
The efficiency of a branch-and-bound

as shown in equation (1),

algorithm depends on the branching rule to
build a search tree. Since we use a particular
form of branching procedure, we need to-
explain it before explicitly stating the algo-
rithm,
Branching Proecedure

Suppose there is a given P(%), Define
A(P(®) to be the set of unscheduled
jobs which are available to be scheduled
in position %k+1, appended to the right
of J(&) in P(&). The branching procedure

- can best he explaiced by an example.

Consider Figure 1, Cbvicesly P(1):(J(1}
=1) and P(2): (J(1)=1, J(2)=2). By
definition of A(P(%)), A(P(2)) should be
jobs 3 and 6. Notice that jcbs 4,5 and
7 cannot be a candidate for the next
branch, since job 3 or 6 is not scheduled
yvet. Usually the jeb for the next branch is
chozen by computing lower bound values
for jobs 3 and 6, then selecting the job
which has the smaller lower bound value,
However, we do not adopt this usual bran-
ching rule. Instead, we use the rule “branch
from the job which has the lowest job-num-
ber”. Then, for the current network, J(3}
=3, F(3):(1,2,3) and A(P(3))=(4,5,6).
The reasoning is based on the following
arguments. :

i) This rule is muck simpler than the
uzual rule from the point of computational

tiree, particularly in the case where there is

78

2 large number of jobs in A(P(F)),

(i} The fluctuation of job ordering for
an optimal schedule is not expected to be
far away from the natural ordering of jobs:
Corollary 1 asserts this fact.

These two arguments turn out to be val-
idated by
‘The number of iterations to reach the best-

the computational experiences.

solution is relatively very low, as compared
to the number of iterations to prove optim-
ality. Consecutive generation of A(P(R))
can be done by the following scheme. Sup-
from A(P(2—1)) and
schedule it in position k. Then,
APERN)=APR-1)— D+ U:
jEAE) and B(HSP(H),
where A(1) = (set of immediately succeeding
jobs of 7), and
B(j)=(set of immediately preceding

poss we select job ¢

jobs of 7).
The Algorithm
A branch-and-bound algorithm for sched-
uling N jobs on Af identical machines in
parallel, where the objective is to minimize

|‘I|~wt. T, "i B K

Precedenee ral ;m«r-
: IR

|
|
I
i

Fenediie the 0T L
Tikeilei
ATl k) =PRI T1]
LLLALS ALY S
dundancy Lret Y
—(__[p P Dy) e

phns 18

o ——{Tout LESTR—>%,

)

v TeEt keKal
— i

[l
il

IL\Mc wadule | fGmnerate
Hiai¥l=Jlwmel) AP
A=kl
I
T Teer A(FUR))xf Feg e

Figure 2: Flow chart
Legend: UB=upper bound
LB=Iower bound
¥ =lexicographically
greater than

the tfotal cost of lateness, is presented in
the form of flow-chart,
The detailed step-by-step explanation of the
flow chart may be found from the paper
[6). Note that the calculation of lower
bound has been changed and the improved
lower bound should be identified by equa-
tion(1), The effect of the change in lower
bound will be

tional experiences. The following simple ex-

discussed in the computa-

ample illustrates how the branch-and-bound
algorithm develops to find an optimal solu-
tion and prove its optimality.
Example 2: Find an optimal sequence
which minimizes total cost of lateness when
N=5 M=2, t,=24,6,53, and p;=2,72,
4,10,9 for the jobs, respectively.

If we arrange the data in order of incr-
easing r;=t;/p;, the jobs are numbered as
below.

jobnumber 1 2 3 4 5
t; 3526 4
b: 910 2 4 2

For this small size of problem, if we enu-
merate explicitly, there are 5! (i.e.,, 120)
sequences or 600 nodes (iterations or partial
permutations) in the search tree to be exa-
mined. Reductions of computation come
from two sources; one from the precedence
Theorems 1 & 2), and

hounding procedure

relations (Corollary 2,
the other from the
{mainly the lower bound).

Corollary 2: shows job 1 precedes all
other jobs in an optimal
schedule,

Theorem 1: shows that job I precedes
jobs 4 and 5, iob 2 prece-
des job 4, and job 3 pre-
cedes job 5 in an optimal
schedule,

Theorem 2: shows jobs 1 and 2 precede
iob & in an optimal sched-
ule.

Comking the above informwations on optimal
ordering of the jobs, the following network-
type precedence relations may be found.,

Figure 3: Precedence Relaticns
The above precedences reduce the number
of permutations that must be accounted for
to only 5 permutatioms (i.e., 1-2-3-4-5,

/ ’
/ / et
rd A
/ i
gh) s
S /6 7T/ 36
7 / ¥)
:r/;\ 56 /’ -
~ ..7/

Figure 4:Search Tree

4. Computational Experience

In order to compare the efficiency of the
current branch-and-bound algorithm with
the previous one, the exactly same problems
appearing in (6) are tested. The program
was used on an IBM 370/165 with PL/1
language for the compilation of the progr-
am. The computational results for the 15
problems are summarized in Table 1.

The computational experience is designed
to investigate the increase in computational
time as the number of jobs increases. The
influence of the numher of machines on

79
1-2-3-5-4, 1-2-4-3-5, 1-3-2-4-5 and 1-3-2
—5-4}, which have only 18 nodes (a reduec-
tion of over §5%). Further reduction resu-
Its from the application of the lower bound
or possibly from the redundancs‘f test due
to Schrage.(15). Figure 4 shows the search
tree which is created as the algorithm pro-
cesds.

The example has a minimum total penalty
cost of 36 and the optimal sequence is 1-2-
3-4-5. We generate 10 out of the possible
16 rodes by using the bounding procedure.

lower bound
{value)

X: indication of discard
Arrow: direction of the
algorithm flow

computer time is assumed negligible based
on the results of [3). The solution time
does not necessarily increase as the number
of jobs increzses, probably because the
solution time is heavily dependent on the
information structure of ¢; and p; for each
problem. An extensive search for this de-
pendency has not been attempted. However,
a study of the results in Table 1 reveals
the following:

(i) The computational time by the current
algorithm is uniformly less than that by the
previous algorithm. In particular, the reduc-
tion in time for the higher numbers of jobs

Problem Number Number Valve of Value, of Computation time
Number of of first best . in seconds (cpy time)
Jobs Machines solution cbtained previous current
1 5 2 28 26 0.4 0.3
2 -] 2 &0 60 0.3 0.2
3 7 3 28 26 0.4 0.4
4 8 2 131 129 0.5 0.4
5 b4 3 140 140 0.4 0.4
6 0 2 718 7i4 6.1 5.4
7 1 3 0% o Lz 1.¢
3 12 2 489 489 0.9 0.8
@ 13 3 232 230 3.6 7
[25 3 252 250 20,7 8.7
T 35 4 1,078 1,076 8.4 7.2
12 45 4 4,052 4,052 571 52.3
13 55 8 2,847 2,835 82.5 62,7
T4 &5 8 3, 445 3,458 $7.8 68.0
15 75 3] 2,510 2, 502 193. 9 120,5

Table 1. Computationzl Resulis

{(»=55,65, and 75) is noticeabls.
(ii) The value of the first solution (i.e.,

the solution by the ‘natural order’) is very
ciose to the optimal szolution. Furthermore,
five out of the 15 problems solved achisve
the optimum on their first complete permu-
tation. Thiz implies that the branching pro-
cedure is very efficient,

(iii) Less than a second is required to
solve the first five problems, less than a
minute is need to seclve the problsms with

10 to 45 jobs, and zbout less than two minu-

tes consumed for the problems with 55 to--

to 75 jobs, which indicate that such moder-
ately large-sized preblems can still be solved

within quite short periods of computer time.

5. Summary

An improved branch-and-bound algerithm
was discussed for the sequencing problem
when all jobs are available to process at
time zero and are indepsndenf. The compu-
ter times required to solve the problem are
which demonstrates

The

encouragingly short,
that the algorithm is rather efficient,

i

following factors have contributed to make
the algorithm efficiznt.

(i) The reduction of partial permutations.
by Corollary 2, Thzorems 1 and 2 is signi-
ficant. These results, in fact, bring compu-
tationally infeasible sequencing problems to
within the realm of computability.

{ii} The improved lower bound is wvery
sharp to reduce the computational effort
effectively.

fiiiy The unusual branching procedure
based on the job-numbering schemss is very
efficient, I

{iv) The back-tracking
efficiznt.

method adopted.
Note that
the

in the search trse is
many branch-and-bound methods use
jump-tracking method.

Last of all, we would likz to mention that
the program listing is available from the
author for any interestad person.

References

(1] Agin, N. “Optimum Seeking with Branch
and Bound,” Management Science, 13,4, (De—~
cember 1966), pp. B-176-185. o

[2] Artharari, T.S. and K.G. Eamamurthy, “A
Branch and Bound Algbrithm for Sequencing
n-Jobs on m-Parallel Processors,” Opsearch,
7(1971), pp- 147—156

{3] Bhkadury, B., “An Experimental Investigat-
tion of 2 Mode? for Sequencing nJobs on m
Machines in Paraile},” Unpublished thesis,
North Carolina State ©niv. at Raleigh(1970).

(4] Eastman, S., S, Even, and L Isaacs, *Bou-
nds for the Cptimal Scheduling of n Jobs
onm Processors,” Management Science, 11, 2,
(November 1964), pp. 268—270,

{5) Elmaghraby, S., “The Sequencing of n Jobs
on m Paraliel Processors with Extensions to
the Bcarce Resource Problem of Activity
Networks,” Proceedings of the [Inaugural
Conference of the Scientific Computation
Center and the Institute of Statistical Studies
and Research, Cairo, Egypt,{ December 1968)

L6} Elmaghraby, S., and S. Park, “Scheduling
Jobs on a Number of Identical Machines”
AIIE Transactions, 6.1, (March 1974), pp.
1—13.

£7] Mason, A. and C. Moodie. “A Branch and
Bound Algorithm for Minimizing Cost in
Project Scheduling,” Research Memo, No.
70-2, School of Engineering, Purdue Usiv,,
Lafayette, Ind. (1970),

(8] McNaughton, R. “Scheduling with Deadlines
and Loss Functions,” Management Science,
6,1 (September 1959}, pp. 1—-12.

81

(9] Nabeshima, I. “On the Bound of Makespan
and its Application on m Machine Scheduling
Problem,” Journal of Operatiorfs' Research
Sbciety of Japan. 9,3 & 4 (July 1967), pp.
98—136.

(10] Nabeshima, I. “Some Extensions of the m
Machine Scheduling Problem,” Journal of
Operations Research Sogiety of Japan, 10, 1 &
2 (Oct. 1967), pp. 1—17.

(11] Park, S. “A Branch-an 4-Bound Method for
the Sequencing Problems of n Jobs on m
Ideatical Machines in Parallel,” Unpublished
thesis, North Carolina State Univ. Raleigh,

N.C. (1972).

(12] Pritsker, A. L. Watters, and P.Wolfe,
“Multiproject Scheduling with Limited Reso-
urces: A Zero-one Programming Aprreach,”
Management Science, 16.1 (Sept. 19¢9), pp.
53—108.

(133 Root, J., “Scheduling with Deadlines and
Loss Faactions on k FParallel Machines,”
Management Science, 11,3, (Jan. 1965), pp.
4604735,

[14] Rothkopf, M., “Scheduling Independent
Tasks on Parallel Processors,” Management
Science 11,3 (Jan. 1965), pp.437~447.

[15] Schrage, L., “Solving Resource Ccmstrain-
ed Network Problems by Implicit Enumerat-
ion Non-preemwptive Case,” Operations Resea-
reh, 18, 2, (March 1970), pp.263—278.

