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Abstract _

This paper presents a generalized model for determining minimum cost preventive mainte-

nance schedules where accurate failure data are not available except the “average”{mean)
and the “typical” value(mode) of the component fifetime.

A study[1] of maintenance operations of a
major manufacturer in the Detroit area reports
that: (1) About 82% of the total vearly.do-
wntime is due to unscheduled repairs of mac-
hines, tools and dies; {2) No efficient data

collection system is in existence to record fail-

ures of parts and/or machines. The same
study reports that in some cases, where an
elementary data collection system is operatio-
nal, the sketchy but valuable historical data
are periodically destroyed as part of profit
improvement programs.

Generally, the lack of failure history on

machines is a major obstacle in the develop- ...

ment of an efficient maintenance scheduling
system.

Preventive Maintenance of Failing
Units

I this paper the term “maintenance” of a
failing unit means a corrective action which
may consist of routine adjustments or replace-
ments of sub-components performed on the
unit in order to bring the unit to its intended
performance level.

The policy suggested here is the age repla-
cement model developed by Barlow™ in which
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a unit is maintained T hours after its previous
maintenance or at failure, whichever occurs
first. An optimal maintenance policy should
balance the cost of failures of a unit during
operation against the cost of planned mainte-
nance.

An average cost of regularly scheduled pre-
ventive maintenance is $,. An average cost
of $ is suffered for each in-service failure;

_ this includes all costs resulting from the faiture

(e.g., the costs of downtime and possible lost
sales, idle direct and indirect labor, delays in
dependent processes and increased scrap), as
well as the costs of repair,

Failure Distribution

When accurate failure data are not available,
a Gamma distribution can be used in 2 wide
variety of situations. A Gamma distribution

F&)=— -Gty

where t==age of the unit>>0
a—shape parameter>>{0
A=scale parameter
has the following general characteristics:

1) Most of the empirical distributions(incl-
uding the truncated normal distribution)
can be represented, at least roughly, by

suitable choice of the parameters.
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2) It has increasing failure rate. Thus the
life distribution of any structure can be
described adequately which, when in nor-
mal use, undergoes changes affecting its
future life length.

3) The distribution has
(mode) which may not be at #=0. This

characteristic s not shared by an expon-

a “typical” value

ential distribution even if the latter has

many desirable mathematical properties.

4£) The distribution is skewed to the right

and therefore seems more natural to des-
cribe failure phennmenonqwhich is defined
only on the positive time axis.

5) Most importantly, estimates of the unit's
“average” lifetime and the “typical” value
of the lifetime are sufficient to describe
the specific failure distribution. That is,
A=1/({mean-made) and e=2A-mean

where A, a=scale and shape parameter, respe-
ctively
mean=average lifetime of the unit >
mode
mode=typical lifetime of the unit. (See
Appendix.)

Scheduling Model

Under the maintenance policy described ea-
rlier, the expected cost of operation per unit
time{with the preventive maintenance at age
T, F(T), is

FT(T)=Exp (cost per maintenance)/Exp

{inter-maintenance time)
SpF(T)+ 8§, FA(T)
" [af@yda+ T-F.(T)

SsH(3,—SNF(T)
T _
J Fu(a)da

(Eq. ID

where F,(t)=1—F,(t)=cumulative distribut-
ion function of f(¢) with shape

parameter « -
Unfortunately, there is no simple closed-
form expression for the F,(#), especially when

the shape parameter a is small. However,
when a is an integer a, it can be shown that
(4)

-1 T F

F(T)= Z} e™? (RT)

LE]

Thus it is preferable to mterpolate numerically
Letween solutions for integral a. To perform
this interpolation, let's denote the largest int-
eger which is less than or equal to the shape
parameter o by a. That is,

a= [y

Then
FAT)=(a—a)e " (AT)"/a!
+ ST AT/t
=0
n 21 a—ar 2 =TT ™
and oatradz:- ¢« lee) § eAD
-1 n e-lT":lﬂ’“
n}:u ”‘?Lu ! }

(See Appendix.)
That, a numerically solvable expression for
F(T) is,

S/+(8,— 3 |(a—@PA TP}

T(T)= ST -
a {(a—a)y&p, 1
I R WP 2 L WP I
(Eq. 2)
where

P =T (3T /n!

Scheduling Procedure Summary

The following are the basic procedures for
scheduling of a preventive maintenance prog-
ram,
1, The decision maker wishes to select 2
convenient single maintenance interval T#,

2. The decision maker estimates the “aver-
age” lifetime and the “typical” lifetime of
the unit. From these, =1/ (mean-mode),
a=2-mean, and a=integer value of a.

3. The decision maker chooses a convenient
maintenance interval T% which minimizes
F({T) in Equation 2.

4. As data on unit usage and failure accu-



mulates, he can update his estimates of
the “average” lifetime and the “typical”
lifetime.

5. It can also be shown that F(T) isa
unimodal function. Thus an elementary
numerical search technique can be used
to find the exact optimum maintenance
interval T# if desired.

IMustrative Example

Suppose a vital part of 2 machine has a
typical lifetime of 9 months and an average
lifetime of 12 months. Then 2=1/(12—%=
1/3 and a=12-1/3=4, ¥ $,=%$10 and $,
= $50, the resulting cost of operation for
several trial values of preventive maintenance
interval can be computed - from Equation 2,
‘The values of preventive maintenance interval
and the corresponding cost of operation per
month is shown in Figure 1(“irue cost” cur-
ve). Although the optimum preventive main-
tenance interval is 5.5 months with correspo-
nding minimum cost of operation $2.72/mo-

nth, the cost curve is shallow around the op-
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Sensitivity of Cost of Operation to Errors in
Mode and Mean
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timum value, That s, +109%(—109%) error
in computing the optimum preventive mainte-
nance interval gives only 0.63%(0.66%) inc-
rease in the resulting cost of operation.

Sensitivity Analysis

In the previous example, suppose that the
decision maker makes +10% errors in estim-
ating the typica] lifetime and the average life-
time. The apparent costs of operation under
the error conditions are depicted in Figure 1
with their indicated optimum preventive mai-
ntenance intervals marked by small circles. If
the decision maker uses these indicated optim-
um preventive maintenance intervals, the res-
ulting true cost of operation would be slightly
higher than the true optimum, Table I summ-
arizes the percentage increase in the resulting
cost of operation, Again, the increase in the
resulting cost of operation is very slight.

Table 1 Sensitivity to errors in estimating
mode and mean ’

Indicated
. Optimum  |Corresponding . .
Error Condition preventive | frue cost of |76 increase in
| maintenance]  operation the cost of
interval /month operation
made | mean (month)

0% 0% 59 | $2.7206 0%
—10%—10%: 5.3 , $2.7394 0. 69%
'—IO%;—E--IU% 7.8 | %2 8509 4.8 9
+10%—10%| 62 | $2.7258 0. 19%
+10%:+10% 6.5 i $2.7384 0. 65%

Sensitivity to the Underlying Distr-
ibution
The model developed in this paper is inse-
nsitive to the moderate departures of the un-
derlving lifetime distribution. For numerical
illustration, let's assume that $,=%10 and
$ 5= $50. Suppose a vital part of a machine
has a Weibull lifetime distribution: f(£)=
2te~*(2 is in years). Without loss of general-
ity, it is assumed that its scale parameter is 1.
The Weibull distribution has been widely
used to describe component failures. It is per-
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haps the most popular parametric family of
failure distributions at the present time.

Since F(T)=e for the given distribution,
Equation ] becomes

F(M=0G0—40e ) VE(P(VZ-T)
—0.5)
Where @[-] denotes the cumulative unit nor-
mal distribution.

The values of preventive maintenance inte-
rval and the corresponding true cost of opera-
tion per year is shown in Figure 2 (“true
cost™) when the underlying distribution is, in
fact, Weibull. The true optimum preventive
maintenance interval is , 511 years with corres-
ponding minimum cost of operation $40. 85
per year. .

However, if the true distribution is not kno-

wh except its true mean (:J.:'zze-“d:: JES 2)
and its true mode(=1/+/7 which is obtained
by setting the derivative of 2te~* equal to 0,
the decision maker would assume a Gamma
distribution with 1=2/{v %~ +72) and a=
NE/(VT— D). The values of preventive
maintenance interval and cost of operation per

“rtrue oprimum
o indicated optimum

"‘J-"gpnarent cost .
{Gamma approximation’}

Rezulting Cost of Operation (4fyear)
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Figure 2
Sengitivity of Cost of Operation to Type of
Failure Distribution

Optimal Preveptive Maintenance loterval (multiples of mede)

year under the Gamma approximation are
shown in Figure 2(“apparent cost”).

This “apparent ocost” curve indicates that
the optimum preventive maintenance interval
is .44 years. The “true cost” of operation per
vear is $41.24 if this indicated preventive
maintenance interval is used The resulting
increase in the cost of operation is only
0.95%.

Conclusion: Use of Scheduling Chart

The preventive maintenance scheduling mo-
del presented in this paper is not sensitive to
the underlying lifetime distributions and to
the errors in estimating the “typical” and

Figure 3
PreventiveMaintenance Scheduling Cha rt



“average” lifetime. The model can be wused
under a wide vartety of conditions when the
average lifetime is longer than the typical
lifetime, which is a realistic description of the
general failure behavior of components,

Figure 3 is 2 summary of minimizetion of
Equation 2 for different values of mode, mean,
$s and $, This chart can be used effectiv-
ely in place of Equation 2 to plan a preventive
maintenance schedule.

Note, however, that a preventive mainten-
ance policy it economically of no value if
mean/mode>>§ ;/ $ 5. (See Appendix.)

Appendix
The Gamma distribution is defined by the
egquation

f(t)=—f7-’(%)—(k)*'le—“, >0

Its mean is j:"f(:) dt=a/2 and the mode is
obtained by setting the derivative of F()
equal to 0
SO = A ) (a1
27 O =—pro5Ae a1
— At} =0,
or, mode={a—1)/4.
Solving simultaneously, A=1/ (mean-mode)
and &:=mean/(mean-mode) = 2.mean.
Furthermore, since
F. (T =aE;£e‘*"(1T) /nl, for a<a<<a+1,
FGCT);_? (a_a)F,+1(T') + (a+l
—OF (T)=(a—a)e T (AT)/a!
_,_'gf—u- QAT)"/n!
Then, .
fir@a=-af R0 4

+z. ———&_"C‘I’) at
= (a—a) { 3 “TQT)'}

2. —¢+}
l ‘ﬁl ﬁ e—lT (17‘) E

a=g ﬂ‘:ﬂ""l ME

-+
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_ 1 a—1 = -JT(A'I‘)-
#=0 m=0
which follows from repeated mtegratlon by

parts(3),
THEOREM: Let the random time to failure
of a unit have a Gamma distribution. Then if

mean . S,
made 2 5,

the optimal policy is not to perform preventi-
ve maintenance at all. Otherwise, the optimal
preventive maintenance interval T%* will be a
finite number.,

PROOF OF THEOREM: Let the monoto”
nically increasing function A(¢) denote the
failure rate of the Gamma probability density
function, f(&) : k(&)

_ (At)a-1g2
[FQayieda

The optimum preventive maintenance inte-
aval, T*, is the solution of the equation

LD =(($,~ $HR(D)

o P @dz— (3,3,
-~ $F.(T)})
VAl RZST Wi Xer)
o

or,

W Fu@)dz—FuTy=—5- 22—

Let S(T) denote the left-hand side of the

above equation,

Since 7SI =247 - ["F,(2)dz>0
for T>>0, the S(T) is also a monotonically
increasing function. Therefore, in order for
the 7™ to be finite,

3,
[S(T)er>_$ 5,
But for a Gamma distribution, if

mean & s@&—1 _ _,
mode =1/~ I =e/a-12

kil
s



ag
$,
or aS e,
S rea= A Fuladda—[Fo(T))ren
=A-mean—1—a—1
< $ Ea $ﬁ

= %, 5, —1= $— 8
since [A(T) Ir=w=4. (Q.E.D.)
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