CONVEXITY THEOREM FOR [N, p, q] SUMMABILITY

By Rajiv Sinha

1. Let $\sum_{n=0}^{\infty} a_n$ be an infinite series, and $\{s_n\}$ be the sequence of its partial sums: i.e.,

$$s_n = \sum_{i=0}^n a_i.$$

For α real, define

$$A_0^{\alpha} = 1$$
, $A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}{n}$ $(n=1,2,\cdots)$.

Let $\{p_n\}$ be a sequence with $p_0 > 1$ and $p_n \ge 0$ for n > 0.

Def ne

$$p_n^{\alpha} = \sum_{v=0}^n A_{n-v}^{\alpha-1} p_v . \qquad (1.1)$$

The following identities are immediate:

$$\sum_{v=0}^{n} A_{n-v}^{\beta-1} p_{v}^{\alpha} = p_{n}^{\alpha+\beta} , \qquad (1.2)$$

$$P_n^{\alpha} = p_n^{\alpha+1} = \sum_{v=0}^n p_v^{\alpha}$$
, (1.3)

where

$$P_n = \sum_{v=0}^n p_v.$$

Let $\{q_n\}$ be any sequence of constants, and write

$$(p*q)_n = p_0 q_n + p_1 q_{n-1} + \dots + p_n q_0.$$

 (N, p^{α}, q) Summability

For $\alpha > -1$ and $\sum_{v=0}^{\infty} a_v$ a series, let

$$t_{n}^{\alpha} = \frac{1}{(p^{\alpha} * q)_{n}} \sum_{v=0}^{n} p_{n-v}^{\alpha} q_{v} s_{v} . \qquad (1.4)$$

If $t_n^{\alpha} \longrightarrow s$ as $n \longrightarrow \infty$ we write

$$\sum_{v=0}^{\infty} a_v = s(N, p^{\alpha}, q) \text{ or } s_n \longrightarrow s(N, p^{\alpha}, q).$$

If $t_n^{\alpha} = 0(1)$ we write

$$\sum_{v=0}^{\infty} a_v \text{ is bounded } (N, p^{\alpha}, q).$$

 $[N, p^{\alpha+1}, q]$, summability

For $\alpha > -1$, $\lambda > 0$ and $\sum_{v=0}^{\infty} a_v$ a series, we say that $\sum_{v=0}^{\infty} a_v$ is strongly summable $(N, p^{\alpha+1}, q)$ with index λ to s if

$$\frac{1}{(p^{\alpha+1}*q)_{n}} \sum_{v=0}^{n} (p^{\alpha}*q)_{v} |t_{v}^{\alpha}-s|^{\lambda} = o(1)$$

and we write

whenever $\beta > \nu > \alpha$.

$$\sum_{v=0}^{\infty} a_v = s[N, p^{\alpha+1}, q]_{\lambda} \text{ or } s_n \longrightarrow s[N, p^{\alpha+1}, q]_{\lambda}.$$

We say that $\sum_{v=0}^{\infty} a_v$ is bounded $[N, p^{\alpha+1}, q]_{\lambda}$ if

$$\frac{1}{(p^{\alpha+1}*q)_n} \sum_{v=0}^n (p^{\alpha+1}*q)_v |t_v^{\alpha}|^{\lambda} = (1).$$

REMARK. If we take $p_0=1$, $p_n=0$ for n>0 and $q_n=1$ for $n\geq 0$, then the above definitions yield the standard definition of Cesaro and strong Cesaro summability respectively.

2. In order to prove our theorem, let us restrict the sequence $(p^*q)_n$ by imposing the following condition:

For each $\xi > -1$, there exist positive constants H_1 and H_2 (which may depend on ξ but not on n) such that

$$H_1 n^{\xi} \le (p^{\xi} * q)_n / (p * q)_n \le H_2 n^{\xi}$$
 (2.1)

The condition (2.1) does not hold good in general.

THEOREM. If $\sum_{v=0}^{\infty} a_v$ is bounded $[N; p^{\alpha+1}, q]_{\lambda}$, and summable $[N, p^{\beta+1}, q]_{\lambda}$ where $\beta > \alpha > -1$, $\lambda \ge 1$ and (2.1) holds for $\xi > -1$, then $\sum_{v=0}^{\infty} a_v$ is summable $[N, p^{\nu+1}, q]_{\lambda}$

In view of [2, Theorem 5], the above theorem is a consequence of the following lemma.

LEMMA. If $\lambda \geq 1$, $\alpha > -1$, (2.1) holds for $\xi > -1$ $\sum_{v=0}^{\infty} a_v$ is bounded $[N, p^{\alpha+1}, q]_{\lambda}$ and summable $[N, p^{\alpha+2}, q]_{\lambda}$ to zero, and $0 < \delta < 1$, then $\sum_{v=0}^{\infty} a_v$ is summable $[N, p^{\alpha+1}, q]_{\lambda}$ to zero.

PROOF. We are given that

$$\sum_{n=0}^{m} (p^{\alpha} * q)_{n} |t_{n}^{(\alpha)}|^{\lambda} = o((p^{\alpha+1} * q)_{m})$$

and

$$\sum_{n=0}^{m} (p^{\alpha+1} * q)_n |t_n^{(\alpha+1)}|^{\lambda} = o((p^{\alpha+2} * q)_m).$$

we must prove that

$$\sum_{n=0}^{m} (p^{\alpha+\delta} * q)_{n} |t_{n}^{(\alpha+\delta)}|^{\lambda} = o((p^{\alpha+\delta+1} * q)_{m}).$$

Now

$$(p^{\alpha+\delta} * q)_{n} t_{n}^{(\alpha+\delta)} = \sum_{v=0}^{n} A_{n-v}^{\delta-1} (p^{\alpha} * q)_{v} t_{v}^{(\alpha)}$$

$$= \sum_{v=0}^{n-[\theta n]} A_{n-v}^{\delta-1} (p^{\alpha} * q)_{v} t_{v}^{(\alpha)} + \sum_{v=n-[\theta n]+1}^{n} A_{n-v}^{\delta-1} (p^{\alpha} * q)_{v} t_{v}^{(\alpha)}$$

where θ is any number in the open interval (0, 1/2). Putting $\mu = n - v$ in the second sum and using Abel's partial summation formula on the first sum we obtain

$$(p^{\alpha+\delta}*q)_{n}t_{n}^{(\alpha+\delta)} = \sum_{\mu=0}^{[\theta n]-1} A_{\mu}^{\delta-1} (p^{\alpha}*q)_{n-\mu}t_{n-\mu}^{\alpha}$$

$$+ \sum_{\nu=0}^{n-[\theta n]-1} A_{n-\nu}^{\delta-2} (p^{\alpha+1}*q)_{\nu}t_{\nu}^{(\alpha+1)}$$

$$+ A_{[\theta n]}^{\delta-1} (p^{\alpha+1}*q)_{n-[\theta n]}t_{n-[\theta n]}^{(\alpha+1)}$$

$$= U_{n}+V_{n}+W_{n}.$$

Now

$$3^{-\lambda} \sum_{n=0}^{m} (p^{\alpha+\delta} * q)_{n} |t_{n}^{(\alpha+\delta)}|^{\lambda} \leq \sum_{n=0}^{m} |U_{n}|^{\lambda} / \{(p^{\alpha+\delta} * q)_{n}\}^{\lambda-1}$$

$$+ \sum_{n=0}^{m} |V_{n}|^{\lambda} / \{(p^{\alpha+\delta} * q)_{n}\}^{\lambda-1} + \sum_{n=0}^{m} |W_{n}|^{\lambda} / \{(p^{\alpha+\delta} * q)_{n}\}^{\lambda-1}$$

We now consider the three sums on the right hand side of this inequality separately. Using Hölder's inequality we find

$$\begin{split} |U_{n}|^{\lambda} & \leq \big(\sum_{0 \leq \mu < \theta n} A_{\mu}^{\delta - 1} (p^{\alpha} * q)_{n - \mu} |t_{n - \mu}^{(\alpha)}|\big)^{\lambda} \\ & \leq \big(\sum_{0 \leq \mu < \theta n} A_{\mu}^{\delta - 1} (p^{\alpha} * q)_{n - \mu} |t_{n - \mu}^{(\alpha)}|^{\lambda}\big) \left((p^{\alpha + \delta} * q)_{n}\right)^{\lambda - 1}. \end{split}$$

Thus

$$\begin{split} \sum_{n=0}^{m} |U_{n}|^{\lambda} / ((p^{\alpha+\delta} * q)_{n})^{\lambda-1} &\leq \sum_{n=0}^{m} \sum_{0 \leq \mu < \theta n} A_{\mu}^{\delta-1} (p^{\alpha} * q)_{n-\mu} |t_{n-\mu}^{\alpha}|^{\lambda} \\ &\leq \sum_{0 \leq \mu < \theta m} A_{\mu}^{\delta-1} \sum_{(\mu/\theta) < n \leq m} (p^{\alpha} * q)_{n-\mu} |t_{n-\mu}^{(\alpha)}|^{\lambda} \\ &= o((p^{\alpha+1} * q)_{m} \sum_{0 \leq \mu < \theta m} A_{\mu}^{\delta-1}) \\ &= o((p^{\alpha+\delta+1} * q)_{m} \theta^{\delta}). \end{split}$$

So

$$\frac{1}{(p^{\alpha+\delta+1}*q)_{m}} \sum_{n=0}^{m} |U_{n}|^{\lambda} / ((p^{\alpha+\delta}*q)_{n})^{\lambda-1} = O(\theta^{\delta}). \tag{3.1}$$

$$|V_{n}| \leq \sum_{v=0}^{n-[\theta n]-1} |A_{n-v}^{\delta-2}| (p^{\alpha+1}*q)_{v} |t_{v}^{(\alpha+1)}|$$

$$\leq H \sum_{v=0}^{n-[\theta n]-1} (n-v+1)^{\delta-2} (p^{\alpha+1}*q)_{v} |t_{v}^{(\alpha+1)}|$$

$$\leq H([\theta n]+2)^{\delta-2} \sum_{v=0}^{n} (p^{\alpha+1}*q)_{v} |t_{v}^{(\alpha+1)}|$$

$$= o[[\theta n]+2)^{\delta-2} (p^{\alpha+2}*q)_{n}]$$

because if a series is summable $[N, p^{\alpha+2}, q]_{\lambda}$ it is also summable $[N, p^{\alpha+2}, q]_{1}$ for $\lambda > 1$. Thus

$$|V_n| = ((p^{\alpha+\delta} * q)_n).$$

Hence

$$\sum_{n=0}^{m} |V_{n}|^{\lambda} / [(p^{\alpha+\delta*p})_{n}]^{\lambda-1} = \sum_{n=0}^{m} (p^{\alpha+\delta*q})_{n} |V_{n}|_{\lambda} / [(p^{\alpha+\delta*q})_{n}]^{\lambda}$$

$$= o((p^{\alpha+\delta+1}*q)_{m}). \tag{3.2}$$

Finally

$$|W_n|/(p^{\alpha+\delta}*q)_n \le H|t_{n-[\theta n]}^{(\alpha+1)}|,$$

so that since $\theta \in (0, 1/2)$

$$\sum_{n=0}^{m} |W_n|^{\lambda} / [(p^{\alpha+\delta*p})_n]^{\lambda} \le H_1 \sum_{n=0}^{m} |t_n^{(\alpha+1)}|^{\lambda} = o(m).$$

Hence it is easy to see that

$$\sum_{n=0}^{m} |W_n|^{\lambda} / [(p^{\alpha+\delta} * q)_n]^{\lambda-1} = o((p^{\alpha+\delta+1} * q)_m).$$
 (3.3)

Combining (3.1), (3.2) and (3.3) we find

$$\lim_{m\to\infty} \sup \frac{1}{(p^{\alpha+\delta+1}*q)_m} \sum_{n=0}^m (p^{\alpha+\delta}*q)_n |t_n^{(\alpha+\delta)}|^{\lambda} \leq H\theta^{\delta}.$$

Since θ is any number in the open interval (0, 1/2), it follows that the superior limit above is zero, which yields the desired conclusion.

It may be remarked that for $q_n=1$, $n=0,1,\cdots$, our theorem reduces to the theorem of Cass [1].

I take this opportunity to express my sincerest thanks to Dr. N. Singh for his constant encouragement and able guidance during the preparation of this paper.

Kurukshetra University Kurukshetra, India

REFERENCES

- [1] Cass, F.P., Convexity Theorems for Norland and Strong Norland Summability, Math. Z. 112, 357-363(1969).
- [2] Sinha, R., Construction of a Scale of (N, p, q) method, (to appear).
- [3] Sinha, R., Convexity Theorem for (N, p, q) Summability, Kyungpook Math. Jour. 13(1), (June 1973)