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CONVEXITY THEOREM FOR [N, p,q] SUMMABILITY

By Rajiv Sinha

o |
1. Let ZO a, be an infinite series, and {s,} be the sequence of its partial sums:
n—

i. e.,

S, =21 G; «
1=0

For ¢ real, define

a ¢  (a+1)(ax+2)(ax+n) -
Ao—l, An— - (n=1,2, ) .
Let {p } be a sequence with p,>1 and p, =0 for #>0 .
Def ne
a__ " Ac:r—l
p"_EU n—vpv . (L. 1>
The following identities are immediate:
oaB-1 .0 a+8 '
EO An-—v pu_p: ’ (4. 2)'
a__ ,a+l @ |
P,=p, =2 b, » (1.3)
where
n
P=2>.0,.
p==0

Let {g,} be any sequence of constants, and write

(p*QJn__-qun +04, T +p,ﬂ0 .

(N, p%, q@) Summability

o0
For o> —1 and ZO a, a serles, let
Py =

a__ 1 o ,a
g (p%*¢) = Pr-vo % - o (1.4)

If t:——avs 98 #——00 We Write
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3 a,=s(N,$", @) or s,~—s(N,5% ).

If £=0(1) we write

> a, is bounded (N, 5% ).

[V, paH, ql, summability

oo OO
For a>—1, A>0 and Z}O a, a series, we say that Zo a, is strongly summable
= A —

(N, "1, ¢) with index 2 to s if
. 1 "
Cal =

™), |65 =s|"=0(D)

and we write

OO

>3 a,=s[N,p**, gl or s,—s[N.p**',q],.

=0

We say that X g, is bounded [, p* T gl if
) —

i, O£ =),

REMARK. If we take p,=1, p,=0 for >0 and ¢,=1 for >0, then the above

definitions yleld the standard definition of Cesaro and strong Cesaro summability
respectively.

2. In order to prove our theorem, let us restrict the sequence (p*g), by
imposing the following condition:

For each §>—1, there exist positive constants A, and H, (which may depend
on & but not on #) such that

Huw < (07%) /(0*) < Hp (2. 1)
The condition (2.1) does not hold good in general.

THEOREM. If Z—o a,ts bounded [N, p“+_1,q] 5 and summable [N, a 'H,.qr]]L where

B>a>—1, A=>1 and (2.1) holds for £>—1, then Zo a,is summable [N,p”H, q] 4
whenever B>y > . B
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In view of [2, Theorem 5], the above theorem is a consequence of the following
lemma.

LEMMA. If A2 1 a>=1, (2.1 holds for §>—1 23 a, is bounded [N, P,

o+ 2

q])1 and summable [N,p "7, ql ; to zero, and 0<0<1, then Z] a, is summable [N,

0
pa+ +1, ‘?]:{ lo zero.

PROOF. We are given that
S (P, =0 (07 ),
and
éo (P* ) 1A D A= ((p*F2g) ).
we must prove that
S (P ) 1O =0 (6 g,

n=0

Now

BTV = 5 M)

ﬂ— 8?1] n 5_
= 2 ALO0MOLC+ 2 AT
v=n— [0n] +1
where 6 is any number in the open interval (0,1/2). Putting u=#n—v in the
second sum and using Abel’s partial summation formula on the first sum we

obtain

(p +5-JE- ) t(a_l_ ) Z A ICP )n-—-p, N
n—[@n]—l
n Z Aa 2(pa+1* ) 2’,(.«::nf+1)

— a+1 (a+1)
__l_A (O] (}9 *Q) n— [On] zn— (On]

—U +V +W,.

Now

i

37453 (™) 14TV U, 1Y (T ), )

+ ZIV (€ i R ERES Ul LTI G ARt R

n=[0 n=0
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We now consider the three sums on the right hand side of this inequality
separately. Using Holder’s inequality we find

U< = A ), 1A Y
0<u< H &
<( 33 AT, 570N (0 )N
0<Lu<l H ~ul b=
Thus
Sl ARE S s S ™, 1
n=0 n=y ng«::rau i
— g —1 o (c:r) A
< 3 A > *
0<u<Om * (/0 <n<m (p q>” #l n— ﬂ,
=o((p* ) 2 A°Th)
0<pn<0m *
_ ((pa—f-ﬁ—}-l* ) 6&')
So |
( pa+51+1*q) > (U1 /(6 ), ) =0(8). (3.1)

n— [Gn] —1 _ |
Vi< 2 14,0105 ),

<H X (—o+D)’ 72" g, |£4HD)

<H([67] +2>5*2£ (g |2 @HD)

o[[07] +2)° "% p «t2, D)

a-+2

because if a series is summable [N, “, g, 1t 1s also summable [N,p "7, q] >
for A>1. Thus
V,1=((0" %)),
Hence
> V1Y 1T -3 (67 0%g) |V 1L/ 105 %) 12
= o((p™ ) ). (3.2)
Finally

W1 /(6% ), < HILS D) |,
so that since 6 & (0,1/2)
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1 ' g -
= W, < Hy S 1K = o0m,
Hence it is easy to see that
1§
W0 ) T =007 ). (3.3)
Combining (3.1), (3.2) and (3.3) we find
. 1 " o+ 3 (a+3) 2 )
l - . * .
l?l;fl_iiup (pa,g l*q) Eo (P q),l1, " < HE

/i

Since 6 is any number in the open interval (0, 1/2), it follows that the superior
limit above is zero, which yields the desired conclusion.

It may be remarked that for ¢,=1, #=0,1,-+, our theorem reduces to the

theorem of Cass [1].
I take this opportunity to express my sincerest thanks to Dr. N. Singh for his
constant encouragement and able guidance during the preparation of this paper.
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