Kyungpook Math. J. Volume 15, Number 2 December, 1975

A NOTE ON FINITE CW-COMPLEXES

. .

By Keean Lee

Let \mathscr{S} be the stable homotopy category (§1) generated by all finite cw-

complexes. The Grothendieck group $G = K_0(\mathscr{G})$ of \mathscr{G} is defined as follows. For $X, Y \in \mathscr{G}$ we define $X \equiv Y$ if and only if there is a space $W \in \mathscr{G}$ such that $X \lor W \simeq Y \lor W$, where \lor is the wedge operation (§1) and \simeq means to be homotopic. Of course \equiv is an equivalence relation. We put $G = \mathscr{G}/\equiv$, then G is a free abelian group ([1]). In a process of this proof the study of $\prod_*^{S}(X)$ (§2) for $X \in \mathscr{G}$ is important.

In this paper we shall prove that if $X \approx Y$ (*Q*-isomorphic) then $\prod_{*}^{S}(X) \approx \prod_{Q}^{S}(Y)$ and $H_{*}(\underline{S}X) \approx H_{*}(\underline{S}Y)$ in §2 (Theorem 8). For this, it will be proved that for finite *cw*-complexes X and Y {X, Y} is a finitely generated abelian group in §1 (Theorem 2). Thus the ring EndX of endomorphisms of X is a finitely generated abelian group (§2).

1. Stable homotopy category

Let \mathscr{T} be the category consisting of finite *cw*-complexes with base points and maps (continuous maps preserving base points). For $X, Y \in \mathscr{T}$ [X, Y] is the

set of homotopy classes [f] of maps $f: X \longrightarrow Y$ in \mathscr{T} , and $*: X \longrightarrow Y$ in the trivial map with *(x) = * for all $x \in X$. We put $0 = [*] \in [X, Y]$.

For $X, Y \in \mathscr{T}$, let $X \lor Y = X \times * \cup * \times Y$, the *wedge* of X and Y, which is a subspace of $X \times Y$. We define $X \land Y = X \times Y/X \lor Y$, the *smash* of X and Y.

Let S: $\mathscr{T} \longrightarrow \mathscr{T}$ be the suspension functor. Since \land is distributive over \lor , we have for $X \in \mathscr{T}$

 $SX \lor SX = (S \land X) \lor (S \land X) = (S \lor S) \land X.$

In fact, since $S = [0,1]/\{0,1\}$ ([0,1]=I) we can identify $S \lor S$ with $I/\{0, \frac{1}{2}, 1\}$, and thus we can get the induced pinching map $\nu: S \longrightarrow S \lor S$. Hence there is a map $\nu_x = \nu \land 1_x: SX \longrightarrow SX \lor SX$. If $f_1: SX \longrightarrow Y_1$ and $f_2: SX \longrightarrow Y_2$ are in \mathscr{T} , we define a map

$$(f_1, f_2) = (f_1 \lor f_2) \cdot \nu_x \colon SX \longrightarrow Y_1 \lor Y_2$$

If $Y_1 = Y = Y_2$ then composing (f_1, f_2) with the natural map $Y \lor Y \longrightarrow Y$ yields $f_1 + f_2: SX \longrightarrow Y$. With this addition [SX, Y] has a group structure with identity

258 Keean Lee

0 = [*].For $f: X \longrightarrow Y$ in \mathscr{T} we define the mapping cone $C_f = (Y \cup I \times X)/\sim$, where \sim

is the equivalence relation $(0, x) \sim f(x)$ and $(1, x) \sim (t, *) \sim *$. Then we have the mapping cone sequence of f

$$X \xrightarrow{f} Y \xrightarrow{i_f} C_f \xrightarrow{\sigma_f} SX \xrightarrow{Sf} SY \xrightarrow{Si_f} SC_f \xrightarrow{\longrightarrow} SY$$

which has the property that every sequence of two maps (and three spaces) is a mapping cone sequence ([1]).

Let \mathcal{GC} be the category of abelian groups. Then there exist the homology functors $\{H_n: \mathcal{F} \longrightarrow \mathcal{GC}\}$ satisfying the following properties ([2]):

- (i) (Exactness) $H_n(X) \longrightarrow H_n(Y) \longrightarrow H_n(C_f)$ is exact.
- (ii) (Connecting) $H_n \cdot S$ is naturally equivalent to $H_{n-1} \cdot S$
- (iii) (Coefficient) $H_n(S^m) = \begin{cases} Z & \text{if } n = m \\ 0 & \text{if } n \neq m, \end{cases}$

where Z is the ring of all integers.

(iv) (Hurewicz) There is the natural transformation

$$[S^n, X] \longrightarrow \operatorname{Hom}_{\mathscr{G}_{\alpha}}(H_n(S^n), H_n(X)) \longrightarrow H_n(X)$$

such that if $[S^{j}, X] = 0$ for all j < n(n > 1) then $[S^{n}, X] \longrightarrow H_{n}(X)$ is an isomorphism. (Note that by the above description $[S^{n}, X]$ is an abelian group (n > 1).)

Let \mathscr{H} be the category of all finite *cw*-complexes with base points and homotopy classes of maps preserving base points. Then \mathscr{H} is a quotient category of \mathscr{T} . We now want to extend this category \mathscr{H} to a good category which is called the *stable homotopy category* \mathscr{G} .

The category \mathscr{S} is defined as follows. The objects are pairs (X, n) with (X, n) = (SX, n-1) where $X \in \mathscr{H}$ and $n \in \mathbb{Z}$. The morphisms are $\mathscr{S}((X, n), (Y, m)) = \lim_{r \to \infty} [S^{n+r}X, S^{m+r}Y] = \{S^{n+r}X, S^{m+r}Y\}$, where r+n, r+m>0. Thus, given a space

 $X \in \mathscr{H}$ we can refer to its *desuspension* $S^{-1}X$ in \mathscr{S} .

Let \mathcal{GO}^Z be the category of graded abelian groups over Z and degree zero maps. For each $X \in \mathcal{H}$ let H(X) be the *total homology*, i.e. $(H(X))_n = H_n(X)$. Let $\overline{S}: \mathcal{GO}^Z \longrightarrow \mathcal{GO}^Z$ be the shifting automorphism, i.e., for $A = \{A_n\} \in \mathcal{GO}^Z$ $\overline{S}(A_n) = A_{n+1}$. Then the connecting property (ii) on the H_n 's gives the commutative diagram

259•

Also, there exists a unique $H: \mathscr{S} \longrightarrow \mathscr{G} \alpha^Z$ still compatable with S and \overline{S} and

is commutative, where $\longrightarrow: X \longmapsto (X, 0)$ and $S: (X, n) \longmapsto (X, n+1)$ ([2]). Note that for n > 0 $H_{-n}(X) = H_0(S^n X) = H_1(S^{n+1}X)$, that is, $H_n(\langle X, m \rangle) = H_{n-m}(X)$. Every one of the properties listed for $H_n: \mathscr{H} \longrightarrow \mathscr{GO}$ holds for the homology functor $H_n: \mathscr{G} \longrightarrow \mathscr{GO}$, $n \in \mathbb{Z}$. For $X \in \mathscr{H}$ if $H_j(X) = 0$ for $j \neq n$ and $H_n(X) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (*m*-times) then X is isomorphic to $S^n \vee \cdots \vee S^n$ (*m*-times) in \mathscr{G} ([2]). LEMMA 1. (The 1st stable Dold lemma)

Let \mathscr{A} be an abelian category, and let $T: \mathscr{G} \longrightarrow \mathscr{A}$ be a functor which carries mapping cone sequences into exact sequences. Moreover, let C be a class of objects in \mathscr{A} closed under the formation of kernels, cokernels and exact extensions. That is, if for $A_1, A_2, A_4, A_5 \in C$ $A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_4 \longrightarrow A_5$ is exact in \mathscr{A} then $A_3 \in C$.

If $TS^n \in C$ for all *n* then $TX \in C$, $X \in \mathscr{H}$ ([2]).

PROOF. At first, we have to note that for each $(X, n) (=S^n X) \sum_{n} H_n(\langle X, n \rangle)$ is a finitely generated abelian group ([2]), because of X is a finite *cw*-complex. Let A be a class of non-trivial spaces of \mathscr{S} such that X=(X,0) is in A if and only if H(X) is finitely generated, $H_j(X)=0$ for j>0 and $H_0(X)$ is a free Z-module. We want to prove that if $X \in A$ then $T(S^n X) \in C$ for all n. If we can do that, then for all X with $\sum_n H_n(X)$ finitely generated we have $S^n X \in A$ for some n, and thus $T(X) \in C$. Note that if $\sum_n H_n(X)$ is finitely generated then for j sufficientely large $H_j(X)=0$, and that there is n such that $S^n X \in A$. Therefore our lemma is completly proved.

Take $X \in A$. Let c(X) be the smallest integer j such that $H_j(X) \neq 0$. Then $c(X) \leq 0$. If c(X) = 0 then $H_n(X) = 0$ for $n \neq 0$ and $H_0(X)$ is free. Thus X is isomorphic to a wedge of S^0 . By our hypothesis $T(X) = T(\bigvee S^0) = \bigoplus T(S^0) \in C$.

260

Keean Lee

Suppose -c(X) > 0 then for all j < c(X) $H_j(X) = 0$. Thus $H_{c(X)}(X) \cong \{S^{c(X)}, X\}$ (see the above (iv)) is finitely generated. Put W = a wedge of c(X)-dimensional spheres such that there is a map $W \longrightarrow X$ which induces the onto homomorphism $\{S^{c(X)}, W\} \longrightarrow \{S^{c(X)}, X\}$. Consider a mapping cone sequence $W \rightarrow X \rightarrow Y \rightarrow SW \rightarrow SX$. Then, for j > 0 the exact sequence

 $(\mathbf{U} \in \mathbf{U} \setminus \mathbf{U}) = (\mathbf{U} \setminus \mathbf{U} \setminus \mathbf{U}) = (\mathbf{U} \setminus \mathbf{U})$

$$0 = H_j(X) \longrightarrow H_j(Y) \longrightarrow H_j(SW) = H_{j+1}(W) = 0 \text{ (see (iii) above)}$$

implies that $H_j(Y) = 0$. For j = 0 the exact sequence

$$0 \longrightarrow H_0(X) \longrightarrow H_0(Y) \longrightarrow H_0(SW) = H_{-1}(W) \longrightarrow H_0(SX) = H_{-1}(X)$$

implies that $H_0(Y)$ is free, because $H_{-1}(W) \neq 0$ and its subgroups are free. Therefore $Y \in A$. For $j < c(X) \xrightarrow{0 \to H_j(Y) \to 0} is$ exact and for j = c(X)

$$\begin{split} H_{c(X)} &(S^{-1}SW) = H_{c(X)}(W) \longrightarrow H_{c(X)}(X) \longrightarrow H_{c(X)}(Y) \longrightarrow H_{c(X)}(SW) = H_{c(X)^{-1}}(W) \\ = 0 \text{ is exact, and thus } H_{c(X)}(Y) = 0. \quad \text{Therefore } c(X) < c(Y). \quad \text{Repeating this way} \\ \text{we have two sequences of spaces:} \end{split}$$

 $\{W_1, \dots, W_n\}, \{Y_1, \dots, Y_n\}$

such that $W_1 \longrightarrow X \longrightarrow Y_1$, $W_2 \longrightarrow Y_1 \longrightarrow Y_2$, \cdots , $W_n \longrightarrow Y_{n-1} \longrightarrow Y_n$

are cofibrations, $W_i(i=1, \dots, n)$ a wedge of $c(Y_{i-1})$ -dimensional spheres with

 $\{S^{c(Y_{i-1})}, W_i\} \longrightarrow \{S^{c(Y_{i-1})}, Y_{i-1}\}, \text{ and } c(Y_n) = 0. \text{ Then } Y_n \text{ is a wedge of zerodimensional spheres, and thus } T(Y_n) \in C. \text{ Since } T(W_n) \in C, \text{ for all } n \quad T(S^n Y_{n-1}) \in C,$

because of the sequence

•

$$T(S^{n-1}Y_n) \longrightarrow T(S^nW_n) \longrightarrow T(S^nY_{n-1}) \longrightarrow T(S^nY_n) \longrightarrow T(S^nY_n$$

is exact and $T(S^{n-1}Y_n)$, $T(S^nW_n)$, $T(S^nY_n)$, $T(S^{n+1}W_n) \in C$. Inductively, we get $T(S^nX) \in C$ for all n.

THEOREM 2. $\mathscr{G}(X,Y)$ is finitely generated.

PROOF. Let *C* be the class of finitely generated abelian groups in \mathcal{GC} . Then *C* is closed under the formation of kernels, cokernels and exact extensions. For all *n* the functor $\{S^n, -\}: \mathcal{G} \longrightarrow \mathcal{GC}$ with $\{S^n, X \lor Y\} = \{S^n, X\} \oplus \{S^n, Y\}$ ([1]) which carries mapping cone sequences into exact sequences. Since $\{S^n, S^m\}$ is finitely generated $\{S^n, S^m\} \in C$. By the above lemma, for all finite *cw*-complexes $Y \ \{S^n, Y\} \in C$. The functor $\{-, Y\}: \mathcal{G} \longrightarrow \mathcal{GC}$ carries mapping cone sequences into exact sequences, where *Y* is a finite *cw*-complex. Since $\{S^n, Y\} \in C$ for all *n*, $\{X, Y\} \in C$ for all finite *cw*-complex *X*.

.

A Note Finite CW-Complexes

`

.

÷

261

2. Some properties of finite cw-complexes

.`

The Freyd category \mathscr{F} , an abelian category, is defined as follows. An object α of \mathscr{F} is a morphism of the stable homotopy category \mathscr{S} , i.e., $\alpha \in \{X,Y\}$ for some finite *cw*-complexes X and Y. If $\alpha \in \{X,Y\}$ and $\alpha' \in \{X',Y'\}$ then a morphism $m \in \mathscr{F}(\alpha, \alpha')$ is a pair (m', m'') satisfying the commutative

subject to the identification

if and only if $m'' \alpha = n'' \alpha$ (hence if and only if $\alpha' m' = \alpha' n'$). There is a functor $\mu: \mathscr{G} \longrightarrow \mathscr{F}$ with $\mu(X) = (X \xrightarrow{1_X} X)$ and $\mu(f) = (f, f)$. Then μ is a full embedding ([1]). In \mathscr{F} morphisms (f, 1) and (1, g)

are a monomorphism and an epimorphism, respectively.

Moreover, given

where $K \xrightarrow{k} X \xrightarrow{f'' \alpha} Y'$ is a cofibration, then Kerf in \mathscr{F} is

262

Keean Lee

and given

where $X \xrightarrow{g'' \alpha} Y \xrightarrow{h} C$ is a cofibration, then $\operatorname{Cok} g$ in \mathscr{F} is

In particular, for a map $f: X \longrightarrow Y$ in \mathscr{T} there is the exact sequence $0 \longrightarrow \operatorname{Cok} f \longrightarrow C_f \longrightarrow \operatorname{Ker} Sf \longrightarrow 0$ (※) in \mathscr{F} , where $X \xrightarrow{f} Y \xrightarrow{i_f} C_f$ is a cofibration, $\operatorname{Cok} f = (Y \xrightarrow{i_f} C_f)$, $\operatorname{Ker} Sf = (C_f \xrightarrow{\sigma} SX)$. and $C_f = (C_f \xrightarrow{1_{C_f}} C_f)$. The following lemma is well known ([1]).

LEMMA 3. Every object of \mathscr{G} is \mathscr{F} -projective and every \mathscr{F} -projective is isomorphic to something in S. Dually everything in S is F-injective and every \mathcal{F} -injective is isomorphic to something in \mathcal{S} .

We need some algebraic prepare for the remainder of this paper. For

 $X(=(X_1 \xrightarrow{\alpha} X_2)) \in \mathcal{F}$, consider the ring of endomorphisms of $X = \text{End } X = \{X, X\}$. We have already proved in Theorem 2 (§1) that EndX is a finitely generated abelian group. As is well known, every finitely generated abelian group is the direct sum of a finite number of indecomposable cyclic subgroups, some finite and primary, some infinite. The number of infinite cyclic summands is called the rank of the group.

DIFINITION 4. For $X \in \mathcal{F}$, $1_X \in \text{End}X$, where 1_X is the class represented by the identity map. If there is an integer m such that $m1_X=0$, then X is said to be torsion. This statement is equivalent to that if EndX is finite then X is torsion.

LEMMA 5. Let X be a finite cw-complex. Then X is torsion if and only if $\Pi_*^{S}(X) \text{ is finite in each degree, where } \Pi_r^{S}(X) = \varinjlim[S^{n+r}, S^n X] = \{S^r, X\}.$

. •

A Note Finite CW-Complexes 263

· _

PROOF. If $\Pi_*^{S}(X)$ is finite in each degree, then it is obvious that X is torsion ([1]). Let X be torsion, then there is an integer m such that $m1_X=0$. Take a generator f of $\Pi_*^{S}(X)$. Then $m1_X \cdot f = mf = 0$, and thus each generator of $\Pi_*^{S}(X)$ is torsion. Since $\Pi_*^{S}(X)$ is finitely generated in each degree, $\Pi_*^{S}(X)$ is finite. LEMMA 6. If $0 \longrightarrow W \xrightarrow{f} X \xrightarrow{g} Y \longrightarrow 0$ is exact in \mathcal{F} , then X is torsion if and

only if W and Y are torsion.

.

· ·

(Note: Our assumption means that there is the following diagram

•

PROOF. Let X be torsion, then there is an integer m such that $m1_X = 0$. Since $m1_X \cdot f = 1_X \cdot mf = mf = 0 = g \cdot m1_X = mg$, we have $f \cdot m1_W = mf \cdot 1_W = 0$ and $m1_Y \cdot g$ $=1_Y \cdot mg = 0$. So $m1_W = 0 = m1_Y$ which means that W and Y are torsion. Conversely, let W and Y be torsion. Then there are integers m and n such that $m1_w =$ $0=n_1$. Since $g \cdot n_1 = ng \cdot 1_x = n_1 \cdot g \cdot 1_x = 0$ there exists a morphism h: $X \longrightarrow W$ with $n_{1_X} = f \cdot h$, $mf \cdot h = f \cdot m_{1_W} \cdot h = 0$ implies that $mn_{1_X} = 0$. That is, X is torsion. If there are two maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ in \mathscr{T} such that for some integer m, $gf = m1_x$ and $fg = m1_y$, then we say that X and Y are Q-isomorphic, written $X \simeq Y$, where Q is the ring of all rational numbers. Moreover, if there are two maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ we can get the canonical homomorphisms EndX \implies EndY such that for $\xi \in$ EndX $f\xi g \in$ EndY and for $\sigma \in$ EndY $g\sigma f$ \in EndX. By our definition $X \simeq Y$ implies that the rank of EndX is the same as one of EndY. Thus if $X \simeq Y$ then $\operatorname{End} X \otimes Q \cong \operatorname{End} Y \otimes Q \cong Q \oplus \cdots \oplus Q$ (*n*-times), where n = the rank of EndX and $\otimes = \bigotimes_{Z}$. In particular, if X and Y are torsion then $X \simeq Y \simeq *$.

 264 Keean Lee

PROPOSITION 7. $X \simeq Y$ implies that $\prod_* (X) \otimes Q \cong \prod_* (Y) \otimes Q$ in each degree. Furthermore X is torsion if and only if $\prod_* S(X) \otimes Q = 0$ in each degree.

PROOF. The second part is clear by Lemma 5. By our hypothesis there are two maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ such that $gf = m1_X$ and $fg = m1_Y$. Let X be torsion, then at least one of f and g is of the finite oder. Therefore

Y is also torsion. Thus

$\prod_{*}^{S}(X) \otimes Q \cong \prod_{*}^{S}(Y) \otimes Q = 0.$

In case the rank of EndX is not zero, f and g are generators with infinite order in $\{X, Y\}$ and $\{Y, X\}$, respectively. If ξ is a generator with infinite order in $\Pi *^{S}(X)$, then $f\xi$ is a generator with infinite order in $\Pi *^{S}(Y)$. Since the converse is true our proof is completed.

In the case $\prod_* (X) \otimes Q \cong \prod_* (Y) \otimes Q \prod_* (X)$ and $\prod_* (Y)$ are said to be Q-isomorphic, written $\Pi_*^{S}(X) \simeq \Pi_*^{S}(Y)$. Since the Hurewicz map $h: \Pi_*^{S}(X) \longrightarrow H_*(\underline{S}X)$ $(H_r(\underline{S}X) = \lim_{n \to r} H_{n+r}(\underline{S}^n X))$ induces the Q-isomorphism ([1]) we have the following.

THEOREM 8. If $X \simeq Y$ then $\prod_{a} (X) \simeq \prod_{a} (Y)$ and $H_*(SX) \simeq H_*(SY)$. The converse of this theorem may be not true. But the following holds.

PROPOSITION 9. If $f: X \longrightarrow Y$ induces the Q-isomorphism $f_*: \prod_{i=1}^{s} (X) \simeq \prod_{i=1}^{s} (Y)$, then Ker f and Cok f are torsion, where X and Y are finite cw-complexes.

PROOF. From the cofibration $X \xrightarrow{f} Y \xrightarrow{i_f} C_f$ and our assumption we have $\Pi_*^{S}(C_f) \otimes Q = 0$, and thus $\Pi_*^{S}(C_f)$ is finite. Lemma 5 says that C_f is torsion. By the above (%) there is the exact sequence

$$0 \longrightarrow \operatorname{Cok} f \longrightarrow C_f \longrightarrow \operatorname{SKer} f \longrightarrow 0.$$

It follows from Lemma 6 that Cokf and SKerf are torsion. Therefore, also Kerf is torsion.

Jeon-buk National University

REFERENCES

[1] J.M. Cohen, Stable Homotopy, Springer-Verlag (1970) [2] P. Freyd, Stable Homotopy, Proc. of the Conf. on Cat. Alg., La Jolla, Springer-Verlag (1966) pp.121-172.

1

(