Kyungpook Math. J. Volume 15, Number 2 December, 1975

A FIXED POINT OF A GROUP OF NONEXPANSIVE MAPS

By Bruce Calvert

Dae Hyeon Pahk [1] proved a result on a fixed point of a group of nonexpansive linear maps. This note shows that linearity is not necessary.

Let K be a nonempty compact convex subset of a Banach space. Let F be a group of nonexpansive transformations of K. For $x \in K$ let C(F, x) be the smallest closed convex subset of K containing x which is invariant under F. Suppose F had regular orbital diameter, that is, for $x \in K$, either $Fx = \{x\}$ or there exist $y, z \in C(F, x)$ such that $\sup\{||y-Tz||:T \in F\}$ is less than the diameter dC(F, x) of C(F, x).

THEOREM. Under the conditions above, F has a fixed point.

PROOF. Let K_1 be minimal with respect to being a nonempty closed convex of K which is invariant under F.

Suppose K_1 has more than one point. Take x_0 in K_1 . Then there are y_0 and z_0 in $C(F, x_0)$ with $r_0 = \sup\{||y_0 - Tz_0|| = T \in F\} < dC(F, x_0)$. Let $M = \{y \in K_1: \sup\{||y - Tz_0||: T \in F\} \le r_0\}$. Then M is nonempty, closed, convex, and invariant

under F since F is a group. Hence, $M = K_1$. Let $N = \{z \in K_1 : ||y-z|| \le r_0$ for all $y \in K_1\}$. N is nonempty, closed, convex, and invariant under F since F is a group. But $N \neq K_1$, contradicting minimality of K_1 .

University of Auckland, Auckland, New Zealand

REFERENCE

[1] Dae Hyeon Pahk, Common fixed point theorem for some bounded linear operators, Kyungpook Math. J. 13 (1973), 157-159.