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ON THE COMPOSITION OF RELATIONS IN TOPOLOGICAL SPACES 

By Norman Levine 

1. Introduction 

We investigate. in this paper, compositive properties, that is, 
preserved' under composition of relations (definitions 2.1, 2.2). 

In 2, we show that normality, Lindelof, denseness, To' T l' T 2’ 

properties. 

regularity, 

complete regularity and completeness are not compositive. Convexity of relations 

on E n as well as total boundedness in uniform spaces is compositive (theorems 

2.6, 2.13). Denseness is treated in theorem 2.9. 

The composition of two open relations is shown to be open (lemma 3.1). For 

open relations, first axiom. second axiom, local connectedenss and separability 

are shown to be compositive (corollary 3.5). 

The composition of two closed relations need not be closed (example 4.5); 

however, if one of the relations is compact, then the composition of two closed: 

relations is closed (theorem 4.2). 

Compactness is not compositive (example 5.3); however, the composition of 
two compact relations is compact if one of the relations is closed (theorem 5.1). 

Connectedness is not compositive (example 6.1). Various sufficient conditions 

are given for composition of two relations to be connected (theorems 6.2, 6.3, 
6.4, 6.5. 6.6). 

In 7, we give sufficient conditions for the composition of two relations to be 

T 0' T l' T 2' regular or second axiom in terms of “ small" topologies for each of 

the relations. 

2. Definitions. examples. general theorems 

찌r e begin with 

DEFINITION 2. 1. For relations R and S on a set X. the comþosz"tz"on of R and 

S (written RoS) is defined to be {(a. b): (a. x) ε S. (x. b) ε R for some x ε X}. 

DEFINITION 2. 2. A property P is called comþosz"tz"ve iff RoS has property P 

when R and S each have property P. 

DEFINITION 2. 3. A property P is bt"þrodμctz"ve iff XXX has property P when 
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X has property P. 

A necessary condition for a topological property to be compositive is given in 

THEOREM 2.4. Every composzïz"ve topologz'cal property Z"S bψrodαctz"ve. 

PROOF. Let P be a non biproductive topological property. Then there exists a 

topological space X with property P for which XxX does not have property P. 

Let x ε X , R= {x} xX and S=XX {x}. Now R and S are each homeomorphic to 

X and thus have property P. But RoS=XXX and hence property P is not 

composit1ve. 

COROLLARY 2.5. NormaUty and Lz'‘'ndelof are not composz"tz'νe propertz'es. 

THEOREM 2.6. Let R , S C EnXEn, R and S bez"ng convex. Then RoS Z"S convex. 

PROOF. Let (a , b) ε RoS and (c, d) ε RoS; then (a, x) 드 5 and (x, b) ε R for 

some x ε X and (c,y) ε 5, (y, d) ε R for some y ε X. Let 0 드 t 드 1. But t(a, x) 

+(1 -t)(c,y) ε 5 and t(x, b)+ (1 -t)(y, d) ε R. It follows that t(a, b) + (1- t) (c, d) 
ERoS. 

Denseness is not compositive as shown in 

EXAMPLE 2.7. Let R= {(r , s): r , s rational} and 5= {(a, b): a, b irrational}. R 
and 5 are each dense in E 2, but R o5=Ø. 

LEMMA 2.8. Let R and 5 be relatz'ons on a topologz'cal space X for which 

R- 1 [x1 is dense for x ε P2 [R1 and 5 z's open. Then Ro5=P1 [51 XP2 [R1. 

PROOF. Clearly, Ro5 C P1 [51 xP2 [R1. Let then (a , b) ε P 1 [51 XP2 [R1. Now 

s [a1 ~ ø and is open and R-1 [b1 is dense; let x ε 5[α1 nR-1 [b1. Then (a , x)εs 
and (x, b) ε R; (a , b) ε Ro5. 

THEOREM 2. 9. Let R-l [x] be deyzse fO7 each x ε P2 [R1 and let S be an open 
relatio1Z on X. Then Ro5 z's dense z!f P 1 [51 and P2 [R1 αre each d ense. 

PROOF. By lemma 2.8, R o5=P1 [51 XP2 [R1. Then c(Ro5)=XXX iff cP1 [51 X 

cP2 [R1 =XXX iff cP1 [51 =X=cP2 [R1. 

T , T~， regularity, complete regularity are not compositive as shown in 
ι >

EXAMPLE 2.10. Let X= {a , b, c} and ‘.r = {rþ, {b}, {c}, {b, c), X}; let 5= {(a, c) , 

(b, b)} and R={(b, b) , (c , a)}. Then R and 5 are each discrete spaces, but Ro5= 

{(a, a) , (b , b)} which is neither T 1 nor regular. 
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T 0 is not compositive as shown in 

not complete. 

If R= {(c, a) , (b, b)} and 

but RoS= {(α， a) ， (b, b)} 

THEOREM 2.13. Let (X , Zf) be a unzform space; let R and S be totally boundeá 

relations on X (relatiνe to (X , Zf) x (X, Zf)). TheJz RoS z's totally bounded. 

PROOF. RoSCP1 [S] XP2 [R] and P 1 [S] and P 2 [R] are each totally bounded 

since projection maps are uniformly continuous. But products of totally bounded 

spaces are tota]]y bounded and subspaces of totaI1y bounded spaces are totally 

bounded. It follows that RoS is totally bounded. 

3. Open reIations 

LE l\1MA 3. 1. Let R aná S be open relaHons on a topological sþace X. Then RoS 

z~s oþen. 

PROOF. RoS= U {S-l [x] XR [x]: x ε X]. But S-l is open and sections of open 

sets are open. 

COROLLARY 3.2. Let R Gnd S be relatz'ons on a toþological sþace X. Thelt 

‘ ntRolntS ζ Int(RoS). 

EXAMPLE 3.3. Let X be the reals, R={(O， y):y ε X} and S= {(x, 0): x E X}. 

Int(RoS)=XXX ct. <þ =IntRolntS. 

THEOREM 3.4. Let P be a þroperty invariant under open continuous sμγjections， 

þroductive and oþen-hereditary. 11 R aná S are open 1’el a#ons on X and hαve 

property P. then RoS has þroperty P. 

PROOF. By lemma 3.1, RoS is open in P 1 [S] XP2 [R] and since P11 S and P21 R 

are open maps, P 1 [S] and P 2 [R] have property P , and thus, so does P 1 [S] XP2 [RJ. 

The theorem fo]]ows. 

COROLLARY 3.5. Let R ani S be open relatz'ons on X. Jf R and S cre each 

lirst axiom Csecond axiom. seþarable, locally COlηzected) ， ihe1Z RoS is jz'rst r:xiom 
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(second a:dom, separable, locally connected). 

4. Closed relations 

LEMMA 4. 1. Let R and S be relatz"ons on a topological space X. lf P 2 [S] or 

P 1 [R] z.s compact, then c(RoS) C c(R)oc(S). 

PROOF. Let (X,y) ε c(RoS); then (x,y)=lim{(xd'Yd):d ε D} where (Xd'Yd) ε 

RoS and d ε D, a directed set. Then for each d ε D, there exists a td ε X such 

that (Xd' td) ε S and (td'Yd) ε R. Case 1. P2 IS] is compact. Then without 10ss 

of generality, we may assume that lim {td:dED}=t. Then lim{(xd, t):dED} = 

(x, t) Ec(S); a1so lim{(td,yd): d ε D} =(t, y) ε cR. Hence (X ,y) ε c(R)oc(S). 

Case 2. P 1 [R] is compact. The proof is similar to case 1. 

THEOREM 4.2. Let R and S be closed relations on a topological space X. If 
.either R or S z.s compact, then RoS z.s closed. 

PROOF. P2 [S] or P1[R] is compact; hence c(RoS) Cc(R)oc(S)=RoS by 1emma 

4. 1. 

COROLLARY 4.3. Let R and S be closed relations on a compact sþace X. Then 

RoS is closed. 

COROLLARY 4. 4. Let R and S be ‘종。-relatz"ons on a topological space X. If R 

or S is comþact, then RoS is an ‘~CT. 

PROOF. R= U {Ri: i 르 1} and S= U {옥: j 능 1} where Ri and Sj are each closed. 

Then R。s= U {Rz。sj; j 능 1,j 는 1} and Ri or Sj is compact. Then RioSj is closed 

by theorem 4. 2. 

EXAMPLE4.5. Let R=S= f(x, : ì: x>이 be re1ations on the set of reals. RoS x 
={(x,:c):x>O} and c(RoS) = {(x , x): x 능 O} ct. RoR=c(R)oc(S). 

5. Compactness 

THEOREM 5. 1. Let R and S be compact(sequen tz"ally comþact) γelations on α sþace 

X and sα:pþose that R is closed or S z.s closed. Then RoS is compact (sequentially 

comþact). 

PROOF. We prove on1y the compact case. Let {(xd'Yd): d ε D} be a net of 

points in RoS. Then for each d E D, there exists a td ε X such that (xd' td) ε S 

and (td'Yd) ε R. Without 10ss of generality, we may assume by compactness of 
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PROOF. Modify the proof of theorem 6.2 using the facts that RoS is closed byc 
corollary 4.3, P1 is a closed map since X is compact Hausdorff and point sections 

of closed sets are closed. 

THEOREM 6.4. Let R be a connected relation on X and S 그 L1 (L1 deno tz"ng the 

diagonal); zf S-1 [x] is connected for each x E P 1 [R] , then RoS z's connected. 

PROOF. We made use of the identity RoS=U{S-1[x]X{y}: (x,y) ε R}. Now 

s-1 [x] × {y} and hence s-I [X] × {y} U R is connected when (x, y) ε R. But RC 

R。s and hence R。s= U {s-1 [x] × { y} UR : (x, y) ε R) , a connected set. 

THEOREM 6.5. Let S be connected and R :).L1. If R [y] is connected for all y E 

P2 [S] , tke?Z R。s ts c0%%ected-

PROOF. Here, we use RoS= U {{x} XR [y]: (x ,y) ε S}. Then {x} XR [y] U S is 

connected when (x, y) ε S and S C RoS. Thus RoS= U {{x} xR [y] U S: (x, y) 

ε S} , a connected set. 

THEOREM 6.6. Let S be a connected reldtz"on on X and R a relαtion on X sκch 

tkat R [y] z·s c0%%ected %lzeyz y e P2 [S] . If R=R-l aχd S C RoS, then RoS is 

connected. 

PROOF. RoS= U {{x} XR [y] US: (x ,y) ε S}. It suffices to show that ({x) XR [y]) 

ns ~ ø when (x,y) ε S. Now (x,y) ε S C RoS implies that (x, t) ε S, (t,y) ε R 

for some t. Hence t εR-l[y] =R[y] and thus (x， t)εSn ( {x} xR [y]). 

7. SmaII topologies on R and S 
• 

DEFINITION 7. 1. For a topolo~ical space (X , Y) , let Xx ‘r= {XxO: 0 ε ‘r~ 

and ‘rxx= {O xx: 0 ε Y}. ‘rx ‘r denotes the usual product topology on 
XxX. 

LEMMA 7.2. Let A , BCX and R ,SCXxX. Then AxBnRoS=((XxB) nR)。

((AxX)nS). 

THEOREM 7.3. Let R and S be relatz"ons on a toþologz'cal sþace (X , ‘r) and' 

sμpþose that (‘rXx)ns and (XX ‘r)nR are Hausdorff toþologies. 

Then Yx ‘rnRoS is a Hausdorff tOþology. 

PROOF. Let (a , b) ~ (c, d) in RoS. Case 1. a ~ c. Now (a , x) ε S and (x , b) ε R 

and (c ,y) ε S and (y , d) ε R for some x and y. But (a , x) 낯 (c,y) in S and hence 

there exist 0 1 and O2 in Y for which (a, x) ε (01 xX) nS, (c ,y) ε (Ozxx)ns 
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and ((01n02)XX)ns= qS. Then (a, b) ε (01 XX)nRoS and (c ,d) ε (02xx)n 

RoS. But (01 XX)n (RoS)n(02xX)n (RoS) = ((01n02)XX)nRoS=((XxX)n 

R)o(((01n02)Xx)n잉 (by Iemma 7.2) = RoqS = qS. Case 2. b ~ d. The proof is 

sim iIar, 

THEOREM 7.4. Let R and S be relatz"ons on X , atoþologic싫 sþace. Jj (YxX) 

nS and (XX ‘.r)nR are T 1-toþologies, then (‘.r x ‘.r)nRoS is a Tftoþology. 

PROOF. Let (a, b) ~ (c, d) in RoS. Then (a, x) ε S, (x, b) ε R and (c,y) ε S, 

(y,d) ε R for some x and y. Case 1. b~d. Then (x, b) ~ (y, d) in R a Í1d hence 

there exists an 0ε ‘.r such that (x, b) ε (X,O)nR and (y,d) 종 (Xx O) nR. 

Then d ff. O. Now (a , b) ε (XxO)nRoS and (c， d) 졸 (XXO)nRoS. 

Case 2. a 낯 c. SimiIar. 

THEOREM 7.5. Let R and S be relatio1Zs on X , a toþological sþace. If (Yx 

X)nS and (XX ‘.r)nR are To-toþologies, then (‘.rx ‘.r)nRoS is a To-toþology. 

We omit the proof. 

THEOREM 7.6. Let R and S be re!atz"ons on a toþological sþace X. Jj ( ‘.rXX) 

nS and (XX ‘.r)nR are regular tOþo!ogies, then (.3’ xY)nRoS is a regular 

toþology. 

PROOF. Let (a, b) ε 01X02nRos=(xx02)nRo(01xx)ns (by Iemma 7.2). 

Then there exists an x 든 X such that (a, x) ε (01 XX) ns and (x, b) ε (X× 02) 

nR. Since (‘Y’ . XX) n S is regular, there exist U 1 a d V 1 b ‘7’ such that(a,x) 

E (U1 xx)nsc(01 xx)nS and ('6'01xx)nsc(V1 xX)ns with ((u1nv)xx) 

nS= qS. Likewise, there eixst U2 and V z in ‘.r such that (x, b) 든 (XXU2)nRC 

(XX02)nR and (XX '6'02)nRc(XXV2)nR with (xx(u2nv2))nR=qS. Now 

(a, b) ε ((XXU2) n R)o((U1 xx)ns) c (xx02)nRo(01 Xx)nκ By Iemma 7. 2, 

(a, b) ε (U1 xu2)nRosc(01 x02)nRos. Also, '6' [01 XOzJ n(RoS)= (('6'0 1 xx)n 

(RoS)) U ((XX '6'02) n (RoS)) =Ro(('6'O} xx)ns) U ((Xx '6'02)nR)oS ζ RO((V1 X 

x)nS)U((XXV2)nR)oS= (V1Xx)n(RoS)U(xxV2)n(RoS) (by lemma 7.2)= 

(V1xxuxxVz)n(RoS). But (u1xu2)n(RoS) and (V1xxuxxV2)n(RoS) are 

disjoint as the reader can verify. 

THEOREM 7.7. Let R and S be relations on X , a toþological sþace and sκ'Pþose 

that (XxY)nR and ( ‘.rxx)ns are second axiom tOþologies. Then (YX ‘Y)n 

(R。잉 is a second axiom toþology. 
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PROOF. Let {(XxUi)nR:i 르 1} be a base for (Xx ,.9'-")nR and {(VjXX)ns: 

j 르 1} be a base for (‘.rXx)ns. Then {(VjXUi)n(RoS):i, j 르 1} is a base for 

(‘.rX ..r) n (RoS). To see this, let (a. b) ε (VXU)n(RoS) , U and V in ‘.r. 
Then there exists an x ε X for which (a. x) ε (VXx)ns and (x, b) ε (XXU)디 

R. Then (a. x) ε (VjXx)nsζ(VXX)ns and (x, b) ε (XXUi)nRC(XXU)nR 

for some j and i. Then (a , b) ε (VjXUi)n(RoS)=((XXU사nR)o((Vjxx)ns)c 

C(XXU) nR)o((VxX) ns) = (VxU) n (RoS) • 

The Ohio State University 
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