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ON THE COMPOSITION OF RELATIONS IN TOPOLOGICAL SPACES
By Norman Levine

1. Introduction

We investigate, in this paper, compositive properties, that is, properties
preserved under composition of relations (definitions 2.1, 2.2).

In 2, we show that normality, Lindelof, denseness, TO, T,,T, regularity,
complete regularity and completeness are not compositive. Convexity of relations
on E" as well as total boundedness in uniform spaces is compositive (theorems.
2.6, 2.13). Denseness is treated in theorem 2.9.

The composition of two open relations is shown to be open (lemma 3.1). For
open relations, first axiom, second axiom, local connectedenss and separability
are shown to be compositive (corollary 3.5).

‘The composition of two closed relations need not be closed (example 4.5);
however, 1f one of the relations is compact, then the composition of two closed
relations is closed (theorem 4.2).

Compactness is not compositive (example 5.3); however, the composition of
two compact relations is compact if one of the relations is closed (theorem 5. 1).
Connectedness is not compositive (example 6.1). Various sufficient conditions

are given for composition of two relations to be connected (theorems 6.2, 6.3,
6.4, 6.5, 6.6).

In 7, we give sufficient conditions for the composition of two relations to be
T,T,, T, regular or second axiom in terms of “small” topologies for each of
the relations. |

2. Definitions, examples, general theorems
We begin with

DEFINITION 2.1. For relations R and S on a set X, the composition of R and
S (written RoS) is defined to be {(a,b):(a,x) €S, (x,b) € R for some x & X}.

DEFINITION 2.2. A property P is called compositive iff RoS has property P .
when R and S each have property P.

DEFINITION 2.3. A property P is biproductive iff XXX has property P when
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X has property P.

A necessary condition for a topological property to be compositive is given in

THEOREM 2.4. Every compositive topological property is biproductive.

PROOF. Let P be a non biproductive topological property. Then there exists a
topological space X with property P for which XXX does not have property P.
Let x&€ X, R={x} XX and S=XX{x}.Now R and S are each homeomorphic to
X and thus have property P. But RoS=XXX and hence property P is not

compositive.

COROLLARY 2.5. Normality and Lindelof are not compositive froperties.

THEOREM 2.6. Let R,SC E"XE", R and S being convex. Then RoS is convex.

PROOF. Let (a,b) € RoS and (¢,d) € RoS; then (¢,x) €S and (z,b) € R for
some x & X and (¢,y) €S, (9,d) €ER for some yE X. Let 0<<#<1. But #(a, x)
+A-D(,y) &S and i(x, )+ (1—-8)(y,d) € R. It follows that #(a,b)+ (11—t (c,d)
& RoS.

Denseness is not compositive as shown in

EXAMPLE 2.7. Let R={(»,s): 7,s rational} and S={(q,b): a,b irrational}. R
and S are each dense in E°, but ReS=4.

LEMMA 2.8. Let R and S be relations on a topological space X for which
R™'[x] is dense for x € P,[R] and S is open. Then RoS=P,[S]XP,[R].

PROOF. Clearly, RoSC P|[S] XP,[R]. Let then (g,b) € P [S]XP,[R]. Now

Sla)l # ¢ and is open and R_l[b] is dense; let x &€ S|¢] ﬂR_l [b]. Then (a,x)ES
and (x,0) € R; (a,b) &€ RoS.

THEOREM 2.9. Let R™"[x] be dense for each xEP,[R] and let S be an open

relation on X. Then RoS is dense iff P1 [S] and P, [R] are each dense.

PROOF. By lemma 2.8, RoS=P [S]XP,[R]. Then c(ReS)=AXXX iff cP [S]X
cP,[R] =XXX iff cP|[S]=X=cP,[R].

T ,T, regularity, complete regularity are not compositive as shown in

EXAMPLE 2.10. Let X={g,b,c} and 7 = {0, {8}, {c}, {b,¢c}, X}; let S={(a, 0),
(b,0)} and R=1{(4,0),(c,a)}. Then R and S are each discrete spaces, but RoS=
{(a,a), (D,b)} which is neither T'; nor regular.
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T, is not compositive as shown in

EXAMPLE 2.11. Let X={a,b,¢} and 7 ={0, {c},X}. If R={(c,a), (b,b)} and
S={(a,c), (b,b)}, then R and S are each T-spaces, but RoS=/{(q,a), (b b}

which is not a T -space.

EXAMPLE 2.12. Let X be the reals with the usual metric, If R= {(x, é—):x>0}
and X=S, then R and S are complete spaces, but RoS={(x,x):x>0} which 1s

not complete.

THEOREM 2.13. Let (X,Z') be a uniform space; let R and S be totally bounded
relations on X (relative to (X, Z)IX(X,Z')). Then RoS is totally bounded.

PROOF. RoSCP,[S]XP,[R] and P,[S] and P,[R] are each totally bounded

since projection maps are uniformly continuous. But products of totally bounded
spaces are totally bounded and subspaces of totally bounded spaces are totally

bounded. It follows that RoS is totally bounded.

3. Open relations

LEMMA 3.1. Let R and S be open relations on a topological space X. Then RoS

1S open.

PROOF. RoS=U {S™![x] XR[x]: x € X]. But S™" is open and sections of opern

sets are open.

COROLLARY 3.2. Let R cnd S be relations on a ftopological space X. Then
‘ntReIntS C Int(ReS).

EXAMPLE 3.3. Let X be the reals, R={(0,y):y&E X} and S={(x,0): x € X}.
Int(RoS)=X XX  ¢p=IntRoIntS.

THEOREM 3.4, Let P be a property invariant under open conlinuous surjections,
productive and open-hereditary. If R and S are open relations on X and haeve
property P, then RoS has properiy P.

PROOF. By lemma 3.1, RoS is openin P,[S] XP,[R] and since P,|S and P,|R
are open maps, P,[S] and P,[R] have property P, and thus, so does P, [S]XP,[R].
The theorem follows.

COROLLARY 3.5. Let R and S be open relations on X. If R and S cre each

first axiom (second axiom, sebparable, locally comnected), then RoS is first cxiom
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(second axiom, separable, locally connected ).

4, Closed relations

LEMMA 4.1. Let R and S be relations on a topological space X. If P,[S] or
P [R] is compact, then c(RoS) C c(R)oc(S). |

PROOF. Let (x,y) €c(ReS); then (x,y)=lim{(x,y,):d € D} where (x,y,) &
Ro§ and d &€ D, a directed set. Then for each d € D, there exists a {, & X such
that (x,¢{,) &S and ({,y,) € R. Case 1. P,[S] is compact. Then without loss
of generality, we may assume that lim{¢ ,:d € D} =¢t. Then lim{(x,¢):d € D} =
(x,t) & c(S); also Iim{(td, y,): d e Dt=(, y) EcR. Hence (x,y) € c(R)oc(S).
Case 2. P[[R] is compact. The proof is similar to case 1.

THEOREM 4.2. Let R and S be closed relations on a topological space X. If
either R or S is compact, then RoS is closed.
PROOF. P,[S] or P,[R] is compact; hence c(RoS) C c(R)oc(S)=RoS by lemma

4. 1.

COROLLARY 4.3. Let R and S be closed relations on a compact space X. Then
RoS is closed.

COROLLARY 4.4. Let R and S be # ,-relations on a topological space X. If R
or S is compact, then RoS is an F .

PROOF. R=U{R;: 1 = 1} and S=Y {S}.: 7 =1} where R; and S}- are each closed.
Then RoS=J {RiﬂSj: i =>1,7>=1} and R, or S]- is compact. Then RE.GSJ- 1s closed

by theorem 4. 2.

1

EXAMPLE 4.5. Let stz{(x, T): x>0} be relations on the set of reals. RoS

={(x,2):2>0} and c(RoS)={(x,%): x =0} C RoR=c(R)oc(S).

5. Compactness

‘THEOREM 5.1. Let R and S be compact(sequentially compact) relations on « space
X and suppose that R is closed or S is closed. Then RoS is compact (sequentially

compact).

PROOF. We prove only the compact case. Let {(x,y i d & D} be a net of
points in RoS. Then for each d € D, there exists a ¢ ,E X such that (x ,¢ a,) e S
and (¢, y,) € R. Without loss of generality, we may assume by compactness of
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- R and S that lim(x,,¢)=(x,¢)ES and lim(¢,, y,)=(,,y) € R. Case 1. S closed.
Now lim(x,{)=(x1,) and hence (x,%)&S. Thus lim(x,y,)=(x, y¥) € RoS.
“Case 2. R is closed. Modify case 1.

COROLLARY 5.2. Let X be Hausdorff and R and S o-combpact relations. Then
RoS is g-compact.

EXAMPLE 5.3. Let X=(0,2] and 5 ={4: A=X or AN{2,-} l=g. Let S=

{(x —i—) -—é— < x<"1}; then (% Z)ESand hence S is compact. Let R :{(x —-}E—)
1<x<2} U {(—é— 2)} Since (—%— 2) & R, it follows that R is compact. But RoS

= {(x, x): —§—<x§1}, an infinite discrete space and hence not compact. Note that
(o 1 1 1 1
.(2, -7-) — C(R) mC(S), but (2, 7) & R, (2:! ‘—2—> & S.

6. Connectedness
- EXAMPLE 6.1. Connectedness is non compositive. Let X=1[0,1] with the usual
, (1 3 } z{( L). 3 L} [(_7_ ) 1
topology. Let S {<4, 4),_161:1{’ %5 ) 4Sx£8 U S,y-—4—i

<< i—}U[(x —1—>: 3 < x << —Z—} Then S and R are each connected, but RoS

=|( 1 1 ) ( 1 1 )] .
{( Ao ) \a /) @ disconnected set.

THEOREM 6.2. Let R and S be open relations on a space X. If S|[x] is comnected
Jor each x E X and R[A) is connected when A is connected, then RoS is connected
2ff P;[RoS] is connected.

PROOF. If RoS is connected, then P [R°S] 1s connected since P, 1s continuous.
Conversely, suppose that P, [RoS] is connected and that ReS is disconnected. By
lemma 3.1, RoS is open and hence there eixst nonempty disjoint open sets A
and B for which RoS=A4 U B. Now for each x & X, RoS{x]=A4[x] U Blx] and
since ANB=¢, it follows that A(x] NB[x] =¢. But Alx] and B[x] are open and
R[S [x]] is connected; thus A[x] =¢ or Blx] =¢ for each x & X. It follows then
that P, [A] N P, [Bl=¢. Thus P,[ReS]=P [A4] U P [B],P,[A]l and P,[B] being

non empty, open and disjoint. Hence P, [RoS] is disconnected, a contradiction.

THECREM 6.3. Let X be compact and Hausdorff. Suppose R and S are closed
relctions for which Slx] ¢s connected for ezch x X and R[A] is connected when

A is connected. Then RoS is connected iff P, [RoS] is connected.



252 Norman Levine

PROOF. Modify the proof of theorem 6.2 using the facts that RoS is closed by
corollary 4. 3, Pi is a closed map since X is compact Hausdorff and point sections.
of closed sets are closed.

THEOREM 6.4. Let R be a connected welation on X and SO A (4 denoting the
» & _1
diagonal); if S

(x] is connected for each x = P, [R], then RoS is connected.

PROOF. We made use of the identity RoS=U {S“1 [x] X{y}: (x,y) ER}. Now

s 1 [x] X {»} and hence S_1 (x] X{y} U R is connected when (x,y) E R. But RC
RoS and hence RoS= | {S_1 x] X {yv}UR: (x,9) € R}, a connected set.

THEOREM 6.5. Let S be connected and R D A If R[y] is connected for all y &
P,[S], then RoS is connected.

-’

PROOF. Here, we use RoS= U {{z} XR[y]: (x,y) €S}. Then {x} XR[y] US is
connected when (x,y) &S and SC ReS. Thus RoS= U {{x} XR[y] US: (x, )

& S}, a connected set.

THEOREM 6.6. Let S be a connected reldfz'on onn X and R a relation on X such
that R1y] s connected when y& P,[S]. If R=R ™ and S C RoS, then RoS is

connected.

PROOF. ReS=U {{x} XR[y] US:(x,y) € S}. It suffices to- show that ({x} XR[y])
S # ¢ when (x,y) €S. Now (x,9y) €S C RoS implies that (x,H) €S, ({,y) E R

for some £ Hence ¢t & R [v] =R [y] and thus (x, H)ESN({x} X R [y]).

7. Small topologies on R and S

DEFINITION 7.1. For a topological space (X, .9 ), let XX.9 ={XX0: 0&€ 7}

and J XX={0XX: 0€.7}. F X7 denotes the usual product topology on
XXX.

LEMMA 7.2, Let A,BCX and R,SCXXX. Then AXBNR-S=((XXB)NR)e
((AXX)NS). |

THEOREM 7.3. Let R and S be relations on a tapollogz'cal space (X, 7 ) and

suppose that (T XX)NS and (XX.F )R are Hausdorff topologies.
Then 9 X7 (\RoS is a Hausdorff lopology.

PROOF. Let (a,b) # (¢c,d) in RoS., Casel. a#c¢. Now (g,x) €S and (x,0) ER
and (c,y) & S and (9,d) € R for some x and y. But (a,x) # (¢,y) in S and hence
there exist O, and O, in 9 for which (g, %) € (O;XX)NS, (c,3) E (0, XX)NS
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and ((OlﬂOz)XX)ﬂS':gé. Then (e,b) € (O, XX)NReS and (c,d) € (0,XX)N
RoS. But (OIXX)H(RoS)ﬂ(OzxX)ﬂ(RﬂS)z((OlﬂOZJXX)ﬂRﬂSZ((XXX)ﬂ
R)o(((0,NOYXX)INS) (by lemma 7.2)=Regp=¢. Case 2. b#d. The proof is

similar.

THEOREM 7.4. Let R and S be relations on X, atopological space. If (T XX)
NS and (X XTI )NR are T-topologies, then (T XT )RS is a T -iopology.

PROOF. Let (a,b) # (¢c,d) in RoS. Then (e,x) €S, (x,b) &R and (c,y) €S,
(y,d) € R for some x and y. Case 1. b#d. Then (x,8) # (y,d) in R and hence
there exists an 0 € .9 such that (x,b) € (X,0NR and (y,d) & (XXO)NKA.
Then d &£ 0. Now (g,0) € (XX0O)NRS and (c¢,d) & (X XO)[RoS.

Case 2. a # c¢. Similar.

THEOREM 7.5. Let R and S be relations on X , a lopological space. If (F X
X)NS and (XXIT INR are T iopologies, then (I X.T )RS is a Tytopology.
We omit the proof.

THEOREM 7.6. Let R and S be relations on a topological space X. If (I XX)
NS and (XX )NR are regular topologies, then (T X.T )RS is a regular

lopology.

PROOF. Let (a,5) € 0,X0,NRS=(XX0,)NR(0,xX)NS (by lemma 7.2).
Then there exists an x & X such that (e, x) € (0O, XX)(}S and (x,0) € (X X 0,)
NR. Since (J XX)NS is regular, there exist U, a d V, ia J such that(a,x)
€ (U, XX)NSCO,XX)NS and (FO, X X)NSCWV  XX)NS with ((U,NV XX
NS=¢. Likewise, there eixst U, and V, In 7 such that (x,b) € (X XU )NRC
(XXO0,)NR and (XXFO)NRC(XXV,)NR with (XXU,NV,))NR=¢. Now
(a,0) € ((XXU,) N R)o(U,XXINS) C (XXO0)HNR(O;XX)NS. By lemma 7.2,
(a,0) € (U XU, )NRSC(0,X0,)NRoS. Also, € [0;XO,]N(RS)=((F0O,XX)N
(ReS))UXXZO0,)N(RoS))=Ro((FO, XXINS) UXXZO,)NRIS C Re((VX
XINS)UUXXV)INR)eS=V  XX)N(RS)UX XV, )N (RS) (by lemma 7.2)=

(V' XXUXXV)N(RS)., But (U, XU)DNRS) and (V' XXUXXV)N(RS) are
disjoint as the reader can veritfy.

THEOREM 7.7. Let R and S be relations on X, a topological space and suppose

that (XX ONR and (T XX)NS are second axiom topologies. Then (T X7 )N
(RoS) is a second axiom topology.
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PROOF. Let {(XXU)NR:7 =1} be a base for (XXJ )NR and {(VjXX)ﬂS:
7 =1} be a base for (9 XX)NS. Then {(V,XUDN(RS):4,7 = 1} is a base for
(T XTI IN(RS). To see this, let (a,8) &€ VXUIN(RS), U and V in 5.
Then there exists an x & X for which (g,2) € (VXX)NS and (x,8) & (X XU)(
R. Then (a,x) € (V,XXONSCTV'XX)NS and (x,0) €E(XXUDNRC(XXU)INR
for some 7 and 7. Then (g,b) E(ijUi)ﬂ(RGS)z-((XXUi)ﬂR)G((VjXX)ﬂS)C
((XXU)NR)(VXX)NS)=CVXU)IN(RS).

The Ohio State University
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