Kyungpook Math. J. Volume 15, Number 2 December, 1975

A NOTE ON SEPARATION AXIOMS IN HYPERSPACES

By R. Vasudevan

1. Introduction

For a topological space (X, \mathscr{F}) , let 2^X be the space of all non-empty closed subsets of X with the finite topology (3, Definition 1.7) and C(X), the subspace of 2^X consisting of all non-empty closed compact subsets of X with the finite topology.

In [3] E. Michael investigated many separation properties that are carried over from a topological space (X, \mathcal{F}) to $(2^X, 2^{\mathcal{F}})$ or to $(C(X), 2^{\mathcal{F}})$ where $2^{\mathcal{F}}$ stands for the finite topology. The present paper deals with some more separation properties namely almost regularity, semi regularity, almost normality and semi normality. As in [3], it is seen that all these separation axioms are carried over to 2^X is almost normal if and only if 2^X is almost regular and it is semi normal if and only if 2^X is semi regular. It is also shown that a space X is almost regular if and only if C(X) is almost regular.

2. Notations and definitions

NOTATION 1. For a given topological space (X, \mathscr{T}) define $\mathscr{O}(X) = \{A \subset X : A \neq \phi\}$, $2^X = \{A \subset X : A \neq \phi \text{ and } A \text{ is closed}\}$, $C(X) = \{A \in 2^X : A \text{ is compact}\}$.

NOTATION 2. If $A_0, A_1, A_2, \dots, A_n$ is any given system of subsets of X $(n \ge 0)$, then define

 $B(A_0, A_1, \dots, A_n) = \{F \in 2^X : F \subset A_0, F \cap A_i \neq \phi \text{ for } i \leq n\}$ Without loss of generality it can be assumed that $A_i \subset A_0$ for $i = 1, 2, \dots, n$, since $B(A_0, A_1, \dots, A_n) = B(A_0, A_1 \cap A_0, \dots, A_n \cap A_0)$

NOTATION 3. When there is no confusion $\operatorname{Cl}(F)$ denotes the closure of F and $\operatorname{Int}(F)$ denotes the interior of F. Otherwise we shall write \mathcal{T} -cl F to indicate that the closure of F is taken with respect to \mathcal{T} . Similar meaning for \mathcal{T} -int F. DEFINITION 1. (2, page 160) For a given topological space (X, \mathcal{T}) the

224 R. Vasuderan

collection of all sets of the form $B(G_0, G_1, \dots, G_n)$ with G_0, G_1, \dots, G_n in \mathcal{T} , form a basis for a topology $2^{\mathcal{T}}$ on 2^X , called the finite topology [3] or exponential topology [2].

REMARK 1. The collection of all sets of the form $B(G_0, G_1, \dots, G_n)$ with G_0, G_1, \dots G_n in \mathscr{T} where $B(G_0, \dots, G_n) = \{F \in \mathscr{A}(X) : F \subset G_0, \text{ and } F \cap G_i \neq \phi \text{ for } i=1, 2 \dots n \}$ form a basis for a topology on $\mathscr{A}(X)$, denoted again by $2^{\mathscr{T}}$. It is easily seen that the finite topology on 2^X is the relative topology induced on 2^X by the finite topology on $\mathscr{A}(X)$ (3, 5.2.2).

Now we mention two results from [2] and [3] which we use very frequently.

LEMMA 1. (a) For arbitrary subsets A_0, A_1, \dots, A_n and B_0, B_1, \dots, B_m of X

 $\begin{array}{l} B(A_0,A_1,\cdots,A_n) \subset B(B_0,B_1,\cdots,B_m) \ if \ and \ only \ if \ \bigcup_{i=0}^n A_i \subset \bigcup_{j=0}^m B_j \ and \ for \ each \ B_j \ if \ and \ only \ if \ A_i \subset \bigcup_{j=0}^m A_i \subset \bigcup_{j=0}^m B_j \ and \ for \ each \ B_j \ if \ A_i \subset A_i \ A_i \subset A_i \ i=1,2,\cdots,n \end{array}$

then

$$2^{\mathscr{T}}-\operatorname{cl} B(A_0, A_1, \dots, A_n) = B (\mathscr{T}-\operatorname{cl} A_0, \mathscr{T}-\operatorname{cl} A_1, \dots, \mathscr{T}-\operatorname{cl} A_n)$$

and $2^{\mathscr{T}}-\operatorname{int} B(A_0, A_1, \dots, A_n) = B (\mathscr{T}-\operatorname{int} A_0, \dots, \mathscr{T}-\operatorname{int} A_n)$
(see 2, pages 160–162).

We next collect the definitions of the separation properties that we have used

in this paper.

DEFINITION 2. A set is said to be *regularly closed* [2] if it is the closure of its own interior or equivalently if it is the closure of some open set.

DEFINITION 3. A space (X, \mathscr{F}) is said to be *almost regular* [4] if for every regularly closed set A and each point x not belonging to A there exist disjoint open sets U and V containing A and x respectively. Equivalently a space X is *almost regular* if for each x in X and every open set U containing x there is an open set V such that

 $x \in V \subset \operatorname{Cl} V \subset \operatorname{Int} \operatorname{cl} U$.

DEFINITION 4. A space (X, \mathscr{F}) is said to be *semi regular* [4] if for each point x in X and any open set U containing x, there exists an open set V such that $x \in V \subset Int \operatorname{cl} V \subset U$.

DEFINITION 5. A space (X, \mathcal{T}) is said to be almost normal [5] if for every

A Note on Separation Axioms in Hyperspaces

1

225

pair of disjoint sets A and B, one of which is closed and the other is regularly closed, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Equivalently (X, \mathcal{T}) is almost normal if for every closed set A and every open set $U \supseteq A$, there exist an open set V such that

 $A \subset V \subset \operatorname{Cl} V \subset \operatorname{Int} \operatorname{cl} U$.

DEFINITION 6. A space (X, \mathscr{T}) is said to be *semi normal* [5] if for every closed set A and every open set U containing A, there exists an open set V such that

$A \subset V \subset \text{Int cl } V \subset U$.

DEFINITION 7. A space (X, \mathscr{T}) is said to be an E_1 -space [1] if every point is a countable intersection of closed neighbourhoods of that point.

REMARK 2. It is obvious that a space is E_1 if at each point x_0 , there exist a countable number of basic open neighbourhoods say $\{G_i\}_{i=1}^{\infty}$ of that point such that

$$\{x_0\} = \bigcap_{i=1}^{\infty} \operatorname{Cl} G_i$$

3. We first prove the equivalence of almost normality of a topological space (X, \mathcal{T}) with almost regularity of the hyperspace $(2^X, 2^{\mathcal{T}})$.

THEOREM 1. For a T_1 -space (X, \mathcal{T}) , the following are equivalent (i) (X, \mathcal{T}) is almost normal (ii) $(2^X, 2^{\mathcal{T}})$ is almost regular.

PROOF. Assume that X is almost normal. Let $F_0 \in 2^X$ and \mathscr{U} a $2^{\mathscr{T}}$ -open set containing F_0 . We have to show that there exists a $2^{\mathscr{T}}$ -open set \mathscr{V} such that $F_0 \in \mathscr{V} \subset 2^{\mathscr{T}}$ -cl $\mathscr{V} \subset 2^{\mathscr{T}}$ -int $2^{\mathscr{T}}$ -cl \mathscr{U} .

Without loss of generality we may assume that \mathscr{U} is a basic open set in $(2^X, 2^{\mathscr{T}})$ i.e. we may assume that $\mathscr{U} = B(G_0, G_1, \dots, G_n)$ where G_0, G_1, \dots, G_n are \mathscr{T} -open sets.

Since
$$F_0 \in \mathcal{U}$$
, we have $F_0 \subset G_0$ and $F_0 \cap G_i \neq \phi$ for $i=1, 2, \dots, n$. Assume that $q_i \in F_0 \cap G_i$ for $i=1, 2, \dots, n$.

Since (X, \mathscr{T}) is almost normal, there exist \mathscr{T} -open sets $U_0, U_1, U_2, \dots, U_n$ such that

$$F_0 \subset U_0 \subset \mathscr{T}\text{-cl } U_0 \subset \mathscr{T}\text{-int}\mathscr{T}\text{-cl } G_0$$

R. Vasudevan

and

$$\begin{split} q_i &\in U_i \subset \mathscr{T} \text{-cl } U_i \subset \mathscr{T} \text{-int } \mathscr{T} \text{-cl } U_i \text{ for } i=1,2,\cdots,n. \\ \text{Define } \mathscr{V} &= B(U_0,U_1,\cdots,U_n) \text{ .} \\ \text{Then by Lemma } 1(b) \\ 2^{\mathscr{T}} \text{-cl } \mathscr{V} &= 2^{\mathscr{T}} \text{-cl } B(U_0,U_1,\cdots,U_n) \\ &= B(\mathscr{T} \text{-cl } U_0,\mathscr{T} \text{-cl } U_1,\cdots,\mathscr{T} \text{-cl } U_n) \end{split}$$

$$\begin{array}{l} \subset B(\mathscr{T}-\mathrm{int}\,\mathscr{T}-\mathrm{cl}\,\,G_0,\,\mathscr{T}-\mathrm{int}\,\mathscr{T}-\mathrm{cl}\,\,G_1,\,\cdots,\,\mathscr{T}-\mathrm{int}\,\mathscr{T}-\mathrm{cl}\,\,G_n) \\ \\ \subset 2^{\mathscr{T}}-\mathrm{int}\,\,2^{\mathscr{T}}-\mathrm{cl}\,\,B(G_0,\,G_1,\,\cdots,\,G_n) \\ \\ \subset 2^{\mathscr{T}}-\mathrm{int}\,\,2^{\mathscr{T}}-\mathrm{cl}\,\,\mathscr{U} \ . \end{array}$$

Thus

$$F_0 \in \mathscr{V} \subset 2^{\mathscr{T}} - \operatorname{cl} \mathscr{V} \subset 2^{\mathscr{T}} - \operatorname{int} 2^{\mathscr{T}} - \operatorname{cl} \mathscr{U}.$$

Conversely, let $(2^X, 2^{\mathscr{T}})$ be almost regular. Let F_0 be a \mathscr{T} -closed set and U, \mathscr{T} -open set containing F_0 . It is enough to show that there exists a \mathscr{T} -open set such that

$$F_0 \subset V \subset \mathscr{T}\text{-cl } V \subset \mathscr{T}\text{-int } \mathscr{T}\text{-cl } U.$$

Now B(U) is a 2^T-open set containing F_0 . By almost regularity of $(2^X, 2^T)$, there exists a 2^T-basic open set $B(G_0, G_1, G_2, \dots, G_n)$ such that $F_0 \in B(G_0, G_1, \dots, G_n) \subset 2^T$ -cl $B(G_0, G_1, \dots, G_n) \subset 2^T$ -int 2^T -clB(U) i.e. $F_0 \in B$ $(G_0, G_1, \dots, G_n) \subset B(\mathcal{F}$ -cl G_0, \mathcal{F} -cl G_1, \dots, \mathcal{F} -cl $G_n) \subset B(\mathcal{F}$ -int \mathcal{F} -cl U)

Now \mathscr{T} -cl $G_0 \cap \mathscr{T}$ -cl $G_i = \mathscr{T}$ -cl $G_i \neq \phi$. Hence \mathscr{T} -cl $G_0 \in B(\mathscr{T}$ -cl G_0, \mathscr{T} -cl G_1, \dots, \mathscr{T} -cl $G_n) \subset B(\mathscr{T}$ -int \mathscr{T} -cl U) i.e., \mathscr{T} -cl $G_0 \subset \mathscr{T}$ -int \mathscr{T} -cl U. Clearly $F_0 \subset G_0 \subset \mathscr{T}$ -cl $G_0 \subset \mathscr{T}$ -int \mathscr{T} -cl U. Taking $V = G_0$, we have the desired result.

4. We next prove the equivalence of semi normality of a topological space (X, \mathcal{T}) with semi regularity of the hyperspace $(2^X, 2^\mathcal{T})$.

THEOREM 2. For a T_1 -space (X, \mathcal{T}) the following are equivalent (i) (X, \mathcal{T}) is semi normal, (ii) $(2^X, 2^{\mathcal{T}})$ is semi regular.

PROOF. Assume that (X, \mathscr{T}) is semi-normal. Let $F_0 \in 2^X$ and \mathscr{U} an $2^{\mathscr{T}}$ -open set containing F_0 . We have to show that there exists a $2^{\mathscr{T}}$ -open set \mathscr{V} such

A Note on Separation Axioms in Hyperspaces

· -

227

that

$$F_0 \in \mathscr{V} \subset 2^{\mathscr{T}} \text{-int } 2^{\mathscr{T}} \text{-cl } \mathscr{V} \subset \mathscr{U}.$$

Without loss of generality, we may assume that \mathscr{U} is a 2^{\mathscr{F}}-basic open set i.e. $\mathscr{U}=B(G_0,G_1,G_2,\cdots,G_n)$ for some \mathscr{T} -open sets G_0,G_1,G_2,\cdots,G_n . Since $F_0 \in \mathscr{U}$, we have $F_0 \subset G$ and $F_0 \cap G_i \neq \phi$ for $i=1,2,\cdots,n$. Assume that

$$\begin{split} q_i &\in F_0 \cap G_i \text{ for } i=1,2,\cdots,n.\\ \text{By semi normality of } (X,\mathcal{T}), \text{ there exist } \mathcal{T}\text{-open sets } U_0, U_1,\cdots,U_n \text{ such that}\\ F_0 \subset U_0 \subset \mathcal{T}\text{-int}\mathcal{T}\text{-cl } U_0 \subset G_0 \end{split}$$

and

$$\begin{array}{ll} q_i \! \in \! U_i \! \subset \! \mathscr{T} \text{-int} \, \mathscr{T} \text{-cl} \, U_i \! \subset \! G_i \, \text{ for } i \! = \! 1, 2, \cdots, n. \\ \\ \mathcal{V} \! = \! B(U_0, U_1, \cdots, U_n) \, . \end{array}$$

Then by Lemma 1(b) $2^{\mathcal{T}} - \operatorname{int} 2^{\mathcal{T}} - \operatorname{cl} \mathscr{V} = 2^{\mathcal{T}} - \operatorname{int} 2^{\mathcal{T}} - \operatorname{cl} B(U_0, U_1, \cdots, U_n)$ $= B(\mathcal{F} - \operatorname{int} \mathcal{F} - \operatorname{cl} U_0, \cdots, \mathcal{F} - \operatorname{int} \mathcal{F} - \operatorname{cl} U_n)$ $\subset B(G_0, G_1, \cdots, G_n) \subset \mathscr{U}.$ Hence $F_0 \in \mathscr{V} \subset 2^{\mathcal{T}} - \operatorname{int} 2^{\mathcal{T}} - \operatorname{cl} \mathscr{V} \subset \mathscr{U}.$ Conversely let $(2^X, 2^{\mathcal{T}})$ be semi regular. Let F_0 be a closed set and U an \mathcal{F} -open set containing F_0 . Then $F_0 \in B(U)$. By semi regularity of $(2^X, 2^{\mathcal{T}})$ there

exists a 2[°]-basic open set $B(G_0, G_1, \dots, G_n)$ such that $F_0 \in B(G_0, G_1, \dots, G_n) \subset 2^{\mathscr{T}}$ -int 2[°]-cl $B(G_0, G_1, \dots, G_n) \subset B(U)$ or $F_0 \in B(G_0, G_1, \dots, G_n) \subset B(\mathscr{T}$ -int \mathscr{T} -cl G_0, \dots, \mathscr{T} -int \mathscr{T} -cl $G_n) \subset B(U)$. Then, obviously $F_0 \subset G_0 \subset \mathscr{T}$ -int \mathscr{T} -cl $G_0 \subset U$ the last relationship following from Lemma 1(a).

We can now deduce the well known theorem (2, pages 170–171) namely a T_1 -space (X, \mathscr{T}) is normal if and only if $(2^X, 2^{\mathscr{T}})$ is regular.

COROLLARY 1. For a T_1 -space (X, \mathcal{F}) the following are equivalent (i) (X, \mathcal{F}) is normal (ii) $(2^X, 2^{\mathcal{F}})$ is regular.

PROOF. It is known that a space is regular if and only if it is semi regular and almost regular [4] and it is normal if and only if it is semi normal and almost normal [5]. The proof is obvious in view of Theorems 1 and 2.

228

R. Vasudevan

5. We next consider the hyperspace $(C(X), 2^{\mathscr{T}})$ and see how far the separation properties almost regularity and semi regularity are carried over from the space (X, \mathscr{T}) to $(C(X), 2^{\mathscr{T}})$ and vice versa.

LEMMA 2. If (X, \mathcal{T}) is almost regular, then given a compact set A and an open set U containing it, there exists an open set V such that $A \subset U \subset Cl U \subset Int$

 $\sim 1 V.$

PROOF. The proof is similar to the corresponding result for compact sets in regular spaces.

THEOREM 3. A topological space (X, \mathscr{T}) is almost regular if and only if $(C(X), 2^{\mathscr{T}})$ is almost regular.

PROOF. Let (X, \mathscr{T}) be almost regular. Let $F_0 \in C(X)$ and $\mathscr{U} = B(G_0, G_1, \dots, G_n)$ be a $2^{\mathscr{T}}$ -basic open set containing F_0 . Then $F_0 \subset G_0$ and $F_0 \cap G_i \neq \phi$ for $i=1, 2, \dots, n$. Assume $q_i \in F_0 \cap G_i$ for $i=1, 2, \dots, n$. By Lemma 2, there exists an \mathscr{T} -open set U_0 such that

$$F_0 \subset U \subset \mathscr{T}\text{-cl}\ U_0 \subset \mathscr{T}\text{-int}\ \mathscr{T}\text{-cl}\ G_0$$
 .

By almost regularity of X, there exist open sets U_1, U_2, \dots, U_n such that

$$q_i \in U_i \subset \mathcal{T}\text{-cl } U_i \subset \mathcal{T}\text{-int } \mathcal{T}\text{-cl } G_i \text{ for } i=1,2,\cdots,n.$$

Then by a similar argument as in Theorem 1, We have

 $F_0 \in B(U_0, U_1, \cdots, U_n) \subset 2^{\mathscr{I}} - \operatorname{cl} B(U_0, U_1, \cdots, U_n) \subset 2^{\mathscr{I}} - \operatorname{int} 2^{\mathscr{I}} - \operatorname{cl} \mathscr{U} .$ Conversely assume $(C(X), 2^{\mathscr{I}})$ is almost regular. Let $x_0 \in U$, U a \mathscr{I} -open set. Then $\{x_0\}$ is compact and $\{x_0\} \in B(U)$. Hence there exists a $2^{\mathscr{I}}$ -basic open set $B(G_0, G_1, \cdots, G_n)$ such that

 $\{x_0\} \in B(G_0, G_1, \cdots, G_n) \subset 2^{\mathscr{T}} - \text{cl } B(G_0, \cdots, G_n) \subset 2^{\mathscr{T}} - \text{int } 2^{\mathscr{T}} - \text{cl } B(U).$ Then obviously (See Theorem 1)

 $x_0 \in G_0 \subset \mathscr{T}$ -cl $G_0 \subset \mathscr{T}$ -int \mathscr{T} -cl U.

THEOREM 4. If $(C(X), 2^{\mathcal{T}})$ is semi regular then (X, \mathcal{T}) is semi regular.

PROOF. Let $x_0 \in U$, U a \mathscr{T} -open set. Then $\{x_0\} \in C(X)$ and $\{x_0\} \in B(U)$. By semi regularity of C(X) there exists a basic open set $B(G_0, G_1, \dots, G_n)$ such that

$$\{x_0\} \in B(G_0, G_1, \cdots, G_n) \subset 2^{\mathscr{T}} \text{-int } 2^{\mathscr{T}} \text{-cl } B(G_0, G_1, \cdots, G_n) \subset B(U).$$

∽.

A Note on Separation Axioms in Hyperspaces

·

229

Then obviously

. .

$$x_0 \in G_0 \subset \mathscr{T}\text{-int } \mathscr{T}\text{-cl } G_0 \subset U.$$

6. Lastly we consider the property of a space being an E_1 -space. THEOREM 5. For a T_1 -space (X, \mathcal{T}) , (X, \mathcal{T}) is an E_1 -space if $(2^X, 2^{\mathcal{T}})$ is an

 E_1 -space.

PROOF. Let $x_0 \in X$. Since (X, \mathscr{T}) is $T_1, \{x_0\} \in 2^X$. By hypothesis there exist a countable number of $2^{\mathscr{T}}$ -basic open neighbourhoods $B(G_0^i, G_1^i, \dots, G_{n_i}^i)$ *i* varying from 1 to ∞ of $\{x_0\}$ such that

$$\{x_0\} = \bigcap_{i=1}^{\infty} 2^{\mathscr{T}} - \text{cl } B(G_0^i, G_1^i, \cdots, G_{n_i}^i) .$$

Define for each *i* from 1 to ∞

$$G_i = G_0^i \cap G_1^i \cap \cdots \cap G_{n_i}^i.$$

Then each G_i is a \mathcal{T} -open neighbourhood of x_0 . We claim that

$$\{x_0\} = \bigcap_{i=1}^{\infty} \mathscr{T} - \mathrm{cl} \ G_i$$

For if $t \neq x_0$ belongs to $\bigcap_{i=1}^{\infty} \mathscr{T}$ -cl G_i , then obviously $\{t\} \in 2^{\mathscr{T}}$ -cl $B(G_0^i, G_1^i, \dots, G_{n_i}^i)$ for each *i* from 1 to ∞ and hence

$$\{t\} \in \bigcap_{i=1}^{\infty} 2^{\mathscr{T}} - \operatorname{cl} B(G_0^i, G_1^i, \cdots, G_n^i)$$

a contradiction.

COROLLARY 2. A topological space (X, \mathcal{T}) is an E_1 -space if the hyperspace $(C(X), 2^{\mathcal{T}})$ is an E_1 -space.

Institute of Advanced Studies Meerut University, Meerut 250001, India

REFERENCES

[1] C.E. Aull, A certain class of topological space, commentationes Mathematical 11 (1967), 49-53.
[2] K. Kuratowski, Topology I, Academic Press, New York, 1966.

230

.

·

R. Vasudevan

· ·

[3] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. M.R. 13, 54.

•

- [4] M.K. Singal and Shashi Prabha Arya, Almost regular spaces, Glasnik Matematicki 4.
 (24) (1969), 89-99.
- [5] M.K. Singal and Shashi Prabha Arya, Almost normal and Almost completely regular spaces, Glasnik Matematicki 5 (25) (1970), 141-152.

•

.

-

•

•

•

• ---

-

.

•

•

•

-

X