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PROPERTIES OF ¢c-CONTINUOUS AND c¢*-CONTINUOUS FUNCTIONS

By Paul E. Long and Larry L. Herrington

1. Introduction |
In this paper we further the investigations of c¢-continuous functions found

in [3] and [5] and of c*-continuous functions found in [7]. Professors Gentry
and Hoyle [3] defined the concept of ¢-continuous functions as follows:

DEFINITION 1.1. A function f:X-Y is c-confinuous if for each r & X and
each open V C Y containing f(x) and having compact complement, there exists
an open U containing x such that f(U)CV.

Two useful characterizations of c¢-continuous functions are contained in the

next theorem.

THEOREM 1.2. Let f. XY be a function. Then [ is c-continous if and only if
(a) [3] The inverse image of every oper subset of Y having compact complement

is open in KX.
(b) (B8] The inverse image of every closed compact subset of Y is closed in X.

Professor Park [7] defined the concept of c¢*-continuous functions in the
following manner:

DEFINITION 1.3. The function f: X—Y is c*-continuous if for each countably
compact and closed CCY, f_I(C) is closed in X. Equivalently, if VCY is

open and has countably compact complement, then f_l(V) is open in X.

As noted in [7], every function that 1s ¢*-continuous is also c¢-continuous but
the converse need not hold. Of course, if ¥ is a space where the concepts of
compactness and countable compactness agree, then a c¢-continuous function f: X—
Y would also be ¢*-continuous. Paracompact spaces, Lindelof spaces and metric
spaces are examples of such spaces.

We denote the closure of a set A as cl(4) and the interior by Int(4).

2. Properties of c-continuous funections
In this section we continue the investigations of [3] and [5] concerning

c-continuous functions.
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THEOREM 2.1. For each a € A, let Y be a locally compact Hausdorff space
and let f,:X—Y be c-continuous. Then the function f :X—TI{Y :a & A} defined
' _

by f(x)=1{f,(x)} is c-continuous.
PROOF. We first show the graph of f is closed. To do this, let x,& X and let
{yz, }e 1Y, be different from f(xy)={f,(xp)}. Then there exists a & A such
X

that f B(xo)# y%. Since the graph of each f a 1s closed [5, Theorem 8], there

exist open sets U and V' containing x, and yg, respectively, such that f 5(U)ﬂ V

=@ by the Lemma of [6]. Therefore, fF(U)NV X 1'71581’“):-1;35. Using the Lemma
X

of [6] again, we conclude the graph of f is closed. Now Theorem 7 of [5] gives.

that f is c-continuous.

COROLLARY. If f: XY s c-continuous, where both X and Y are locally compact
Hausdorff spaces, then the graph function g:X—XXY defined by g(x)=1{(x, f(x))

1S C-CONLLNUOUS.

The Corollary gives a somewhat improved version of Theorem 11 of [5].
The converse of Theorem 2.1 does not hold as the following example shows.

EXAMPLE 2.2. Let R be the reals with the usual topology and I=[0,1] have
the subspace topology. Define f,:/—R and f,:I—R as

_{1 if x=0

; Hx=1 if 0<z<1

afl 1 if x=0
fo(#) :{—1; if 0<z<1.

Now define f:I—-RXR by f(x)=(f;(x),fy(x)). Then it is easily seen that f
IS c-continuous, but f, 1s not ¢-continuous.

THEOREM 2.3. For each o< A, let f X, —Y be a function and let Y  be
locally compact. Define f: [1 Xa—e- NY_ asf({x D=1, ). If f is c-continuous
o o

then each f, 1S c-continuous.

PROOF. Let K 5 be a closed compact subset of ¥ g and let {yz,} be a point in
the range of f. Then, since each Y is locally compact, there exists an open U

containing yg, such that cl(U ) is compact. Hence, K gx ;[ﬁcl(U a) 1s a closed
X

- compact subset of [1Y . Therefore, 5 (Kgx I1 clU ) =Ff (K )X I1f, cl(U
compac suseoI;[ i ereorefﬁ(ﬁagﬁc(a))f (Kg) agﬁf‘fc( "
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is closed in [T X, by Theorem 2 of [5]. It follows that f; (K,) is closed in X,
4 4

so that f g is c-continuous, again by Theorem 2 of [5].

The boundedness of a c¢-continuous function plays an important role in deter-
mining its continuity as shown by our next theorem.

THEOREM 2.4. Let f: X—Y be a c-continuous jfuncliom from a space X inlo a
meiric space Y which has the property that closed bounded sets are compact. If f
is bounaed on an open U C X, then f is continuous at every point of U.

PROOF. By Theorem 2 of [3], flU:U-Y 1is c-continuous, and, since f is
bounded on U, f(U) lies in a closed bounded, hence compact, subset of Y.
Theorem 5 of [3] then gives f|U continuous.

This theorem tells us, for instance, that if f: X—R" is c-continuous and if for
each point x € X there exists an open set U containing x such that f is boundesd
on U, then f is a continuous function.

Another theorem that has application in the reals follows Definition 2. 5.

DEFINITION 2.5. [2] The space X has property k, at p € X if for each subset
A having p as an accumulation point, there is a subset B of 4 and a compact

set K O B U {p} such that p is an accumulation point of B. The space X is a
k,-space if it has property £k, at each of its points.

THEOREM 2.6. Let f:X—Y be c-continuous where X and Y are Hausdorff and
X has property k, at p& X. If f is compact preserving, then f is continuous at p.

PROOF. The function f has closed point inverses by Theorem 2 of [5] and the
continuity then follows from Theorem 4.4 of [2].

THEOREM 2.7. Let X be regular and locally compact and let 'Y be locally
compact and Hausdorff. Then f:X—Y is c-continuous if and only if one of the
following conditions holds:

(a) f has a closed graph

(b) f ¢s locally closed [2] and has closed point inverses.

(c) f maps compact sets onlo closed sets and has closed poinl inverses.

PROOF. By Theorems 7 and 8 of [5], f is ¢c-continuous i1f and only if f has a
closed graph. Theorem 3.11 of [2] then gives the conclusion.

DEFINITION 2.8. [8] Let f: X—Y be a function and p& Y. Then the set of
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limit points of f at p, denoted by L({f;p) is the set of all points y €Y such that
there exists a sequence (x,) in X converging to p for which (f(x ))—y.

THEOREM 2.9. If f: XY 1i¢s c-continuous and Y is Hausdorff, then L(f;p)=
{f(p1.

PROOF. Suppose y,& L(f;p) where y,7f(p). Then there exists a sequence
(x,)—p for which (f(xn))-aryo. oince Y is Hausdorff, there exist open disjoint
sets U and V containing y, and f(p), respectively. Also, there exists an #,/E N
such that if #z>n, then f(xn)e U. Thus {f(xn)\nzno} L {3’0} is a closed compact

set whose inverse under f is not closed because it does not contain p. This
contradiction to Theorem 2 of [5] shows y,=f(p) so that L(f;p)={f(p)}.

COROLLARY 2.10. Let X be first countable, Y Hausdorff and f: XY
c-continuous. Then [ is conlinuous at p&=X if and only if f has an at worst
removable discontinuily at p.

THEOREM 2.11. Let f:X—Y be a c-continuous function from the first countable
space X into the first countable countably compact Hausdorff space Y. Then f 1s
CONLInUOUS.

PROOF. Suppose f is not continuous at pe X. Then the first countability of
X gives the existence of a sequence (x )—p such that ( f(x ))——f(p). Thus,

there exists an open set V' containing f(p) such that for any #,& N, there is an
n=>n, such that f(x )& V. Consequently, there is a subsequence (f(x,,)) of f(x ))
on Y —V which accumulates because Y 1s countably compact. Call the point of
accumulation b and note that 6 &Y —V so that b7#f(p). The first countability
of Y now gives, by Theorem 6.2 (2) of [1, p.217] a subsequence ( f(xm)) of

(f(x,)) which converges to b. Thus, b&L(f;p). But this contradicts Theorem 2.9
and We conclude that if (x,)—p, then (f(x,))—f(p) showing f continuous at p.

Theorem 2 of [3] shows that a c¢-continuous f: X—Y may be restricted to any
subset A of X and the resulting function f|A:A—Y will also be ¢-continuous.

However, c-continuous functions may not, in general, be restricted in the range.
That is, if f: X—Y 1is ¢-continuous, then f:X—f(X)CY need not be ¢-continuous

as is shown by the next example.

EXAMPLE 2.12. Let Y be the set of reals [0,o0) and let ¢ be the topology on
Y generated by sets of the form (7,o0) for #>1, together with the sets {1} and
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[0,1) as a base. Note that ¥ is not Hausdorff and the only open sets with
compact complements are ¥, [0,1)U(1,0),(1,00) and [l,00). Let X={1,2,3}
with topology T={{1}, {2,3}, {1,2,3},¢} and define f:X—Y by f(x)=x. The
function f is ¢-continuous. Now give f(X)={1,2, 3}CY the subspace topology
0sex) of ¥. This topology is 0 xy™ {{1}, {3}, {2, 3}, {1,2,3},¢}. Observe that {3}

is open in (f(X),Uf(X)) and has compact complement, but f_l({S})= {3} is not
open in (X,T) showing f:X—f(X) 1s not c-continuous.

The following theorems give conditions under which we may restrict to f(X).

THEOREM 2.13. Let f: X—Y be a c-continuous fumtz'm from a space X into a
Hausdorff space Y. Then f: X—f(X)CY is c-continuous.

PROOF. Let U C f(X) be an open subset of the subspace f(X) such that f(X)
—U is compact in the subspace f(X). Then f(X)—U is a compact subset of ¥
and, since Y is Hausdorff, f(X)—U is closed in Y. Thus, V=Y -(f(X)-U) is

open in Y and has a compact complement. The c-continuity of f gives f L)
open in X. Now, noting that f_l(V):f_l(Y) —f_"l(f(X)—U)=X-—(f_l(f(X))
) =x-x-r ') =r"1U), we conclude f:X—f(X) is ¢-continuous.

THEOREM 2.14:. et f: X—=Y be c-continuous and suppose f(X)CY is closed.
Then [ X—f(X) is c-continuous.

PROOF. Let U C f(X) be open in the subspace f(X) where f(X)—U is compact
in the subspace f(X). Now f(X)—U 1is also closed and compact in Y. Thus
V=Y—-({(f(X)—-U) is an open set in Y having compact complement. Therefore,

fTH(V)=f""(W) is open showing f:X—f(X) is continuous.

THEOREM 2.15. Let f:X—Y be c-continuous and suppose the graph of f, G=
{(x, f(x)):.2E X}, is closed in XXY. Then f:X—f(X) is c-continuous.

PROOF. We first show the graph of f: X—f(X) is closed. Then by Theorem 7
of [5], f: X—f(X) is c¢c-continuous.

Let (x,»)& G where (x,9) € XXf(X)C XXY. Then there exist open sets
UCX and V CY containing x and y, respectively, such that (UXV)N G=¢
because G is closed in XXY. Let W=V N f(X). Then W is open in the subspace
f(X), contains y, and UXW CUXV which implies (UXW)N G=¢. Thus G is
closed In X Xf(X) showing f:X—f(X) has a closed graph.
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3. C*-continuous funetions

We begin our considerations of c*-continuous functions f:X—Y by some ob-
servations concerning the space Y. For any topological space (Y, o), the collection
of open sets having countably compact -complements form a base for a new
topology ¢* on Y. The reason is that if U and V are open and have countably
compact complements, then their intersection has a countably compact com-
plement as may be shown by use of the equality Y- (U N V)= -U)UT -V).
Of course, 6*Co and (Y, 0*) is always a countably compact space. If we consider
the following diagram for any function f and any spaces X and (¥, o),

f

X“_'_'_'_)'(Yr 0)

.\ f 2
\ J
(Y,0%)

we see that f: X—(Y,0) is ¢*-continuous if and only if f:X—(,0*) is conti-
nuous. Also, :(Y,0)—(Y, %) is continuous and ;s c*-continuous.
These remarks lead us to observe that a c*-continuous fundamental group may

be defined analogous to the c-continuous fundamental group of [4] and an
investigation similar to that one made by making heavy use of the above

diagram and its implications. |
The remarks also lead us to an immediate generalization of Theorem 1 of [7].

THEOREM 3.1. Let X be a space and {A, 0 & A} a cover of X such that
either (a) the sets A are all open |

or (b) the sets are all closed and form a neighborhood finite family.
If - X—(Y,0) is a function such that f lAa 1S c*-continuous, then f is c*-continuous.

PROOF. Since each f| A4 L A,—(,0) 1s c*-continuous, our remarks about the
above diagram show that f IAQ,:A &, o*) is continuous. Theorem 9.4 of [I,

Chapter 3, p.83] then gives f:X—(Y,0%*) continuous. Using the remarks
following the diagram again, we see that f: X—(Y,0) is c*-continuous.

Since an analogous diagram holds for c-continuous functions, we note that
Theorem 4 of [3] could be generalized in the same manner as Theorem 3. 1.
Professor Park in [7] defines a space X to be locally countably compact if it is
Hausdorff and each point has a 1*olatively countably compact neighborhood, 1. €.,
for each ¥ & X there is an open U C X containing x such that cl(U) is countably
compaot. We now show that the regularity condition on Y in Lemma 8 of [7]
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may be removed. Upon so doing, that Lemma may be stated as follows:

THEOREM 3.2. Let f: X—Y be c*-continuous and let Y be a locally countably
compact space. Then G(f) s closed.

PROOF. Let x& X and let yE€Y where y#Zf(x). Since Y is Hausdorff, there
is an open V containing y such that f(x)& cl(V). The local countable compact-

ness of Y gives the existence of an open set W containing y such that cl(W) is
countably compact. Thus, V YW is an open set containing y and, since closed

subsets of countably compact spaces are countably compact, cl(V N W)Ccl{V)N
cl(W) shows cl(V N W) is countably compact and furthermore does not contain
f(x). Therefore, Y—cl(V N W) is an open set containing f(x) whose complement

is countably compact. The c¢*-continuity of f now gives an open U C X contain-
ing x such that FAU)CY —cl(VAW). Lemma 1 of [6] then shows G(f) is
closed.

Theorem 3.2 will now allow the regularity condition in Theorem 9 of [7] to
ke dropped.
Our next theorem parallels Theorem 2. 1.

THEOREM 3.3. For each « € A, let ¥ be a locally countably compact space and
let f :X—Y . e c*-continuous from a first countable space X inio Y o Then the
function f: X—>T1Y , defired by f(x)= {f (XD} is c*-continuous.

ox

PROOF. Theorem 3.2 gives the graph of each f closed and the proof of
Theorem 2.1 shows the graph of f is closed. Our conclusion follows from

Theorem 4 of [7].

Since the concepts of compactness and countable compactness are the same in
paracompact spaces, Example 2.2 shows that if f:X—Y XY, is c*-continuous,
then each f: X —Y . need not be c¢*-continuous.

If /:X—-Y 1is c¢*-continuous, then f:X—f(X) need not be c¢*-continuous as

Example 2.12 shows. The next three theorems give conditions under which such
a restriction on the range may be made.

THEOREM 3.4. Let f: XY be a c*-continuous function from a space X into a
Jerst countable Hausdorff space Y. Then . X—f(X) is c*-continuous.

PROOF. The proof is similar to that of Theorem 2. 13.
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Note that the space ¥ of Example 2.12 is first countable, thereby showing the

necessity of the Hausdorff condition in Theorem 3. 4.

THEOREM 3.5. Let f: X—Y be c*-continuwous and suppose f(X)CY is closed.
Then . X—f(X) is c*-continuous.

PROOF. The proof is analogous to that of Theorem 2.14.

THEOREM 3.6. Let f: XY be a c*-continuous function from the first countable
space X into a space Y and suppose the graph of f is closed. Then f:X—f(X) is

C*-conti nuous.

PROOF. As in the proof to Theorem 2.15, we can show the graph of f:X-»
F(X) is closed in XXf(X). By Theorem 4 of [7], f:X—f(X) is c¢*-continuous.

For a function f:X—¥, the graph function g:X—>XXY 1is defined as g(x)=
(x, f(x)) for each x &= X. In [5] conditions were given as to when c-continuous.
functions would have c¢-continuous graph functions. Conditions were also given:
as to when the c-continuity of the graph function would imply the c-continuity
of the original function. Theorems 10 and 11 in ([5] would, of course, apply to:
c*-continuous functions since the concepts of compactness and countable compact-
ness are equivalent in metric spaces. As in [5], we leave open the question of
the existence of a-c*-continuous f: X—Y such that g: X—=X XY 1is. not ¢*-contin-
uous. Our final theorem gives conditions as to when the c¢*-continuity of g:X—-
X XY implies the ¢*-continuity of f: X—Y.

THEOREM 3.7. Let fF: XY be a function, X countably compact and first
countable and Y first countable. If the graph function g:X—X XY is c*-continuous,.

then f 1s c*-continuous.

PROOF. Let x&X and let V be an open set containing f(x) having countably
compact complement. Then P; 1(V) is open in X XY and, since X and Y-V

are countably compact and first countable, XXX -V)=P, '(V) is countably

compact. Thus, P, 1(V) 1S an open set in XXY having countably compact
complement. Therefore, there exists an open U containing x such that g(U)C

P, l(V). It tollows that P, (gU))=fU)CV so that f is c*-continuous.

The University of Arkansas,
Fayetteville, Arkansas, 72701
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