Kyungpook Math. J. Volume 15, Number 2 December, 1975

PROPERTIES OF *c***-CONTINUOUS AND** *c****-CONTINUOUS FUNCTIONS**

By Paul E. Long and Larry L. Herrington

1. Introduction

In this paper we further the investigations of c-continuous functions found in [3] and [5] and of c^* -continuous functions found in [7]. Professors Gentry and Hoyle [3] defined the concept of c-continuous functions as follows:

DEFINITION 1.1. A function $f: X \to Y$ is *c*-continuous if for each $x \in X$ and each open $V \subset Y$ containing f(x) and having compact complement, there exists an open U containing x such that $f(U) \subset V$.

Two useful characterizations of c-continuous functions are contained in the next theorem.

THEOREM 1.2. Let $f: X \rightarrow Y$ be a function. Then f is c-continous if and only if (a) [3] The inverse image of every open subset of Y having compact complement is open in X.

(b) [5] The inverse image of every closed compact subset of Y is closed in X. Professor Park [7] defined the concept of c^* -continuous functions in the

following manner:

DEFINITION 1.3. The function $f: X \to Y$ is c^* -continuous if for each countably compact and closed $C \subset Y$, $f^{-1}(C)$ is closed in X. Equivalently, if $V \subset Y$ is open and has countably compact complement, then $f^{-1}(V)$ is open in X.

As noted in [7], every function that is c^* -continuous is also c-continuous but the converse need not hold. Of course, if Y is a space where the concepts of compactness and countable compactness agree, then a c-continuous function $f: X \rightarrow Y$ would also be c^* -continuous. Paracompact spaces, Lindelof spaces and metric spaces are examples of such spaces.

We denote the closure of a set A as cl(A) and the interior by Int(A).

2. Properties of *c*-continuous functions

In this section we continue the investigations of [3] and [5] concerning c-continuous functions.

· •

THEOREM 2.1. For each $\alpha \in A$, let Y_{α} be a locally compact Hausdorff space and let $f_{\alpha}: X \to Y$ be c-continuous. Then the function $f: X \to \prod_{\alpha} \{Y_{\alpha}: \alpha \in A\}$ defined by $f(x) = \{f_{\alpha}(x)\}$ is c-continuous.

PROOF. We first show the graph of f is closed. To do this, let $x_0 \in X$ and let $\{y_{\alpha}^0\} \in \prod_{\alpha} Y_{\alpha}$ be different from $f(x_0) = \{f_{\alpha}(x_0)\}$. Then there exists a $\beta \in A$ such that $f_{\beta}(x_0) \neq y_{\beta}^0$. Since the graph of each f_{α} is closed [5, Theorem 8], there exist open sets U and V containing x_0 and y_{β}^0 , respectively, such that $f_{\beta}(U) \cap V = \phi$ by the Lemma of [6]. Therefore, $f(U) \cap (V \times \prod_{\alpha \neq \beta} Y_{\alpha}) = \phi$. Using the Lemma of [6] again, we conclude the graph of f is closed. Now Theorem 7 of [5] gives that f is c-continuous.

COROLLARY. If $f: X \rightarrow Y$ is c-continuous, where both X and Y are locally compact Hausdorff spaces, then the graph function $g: X \rightarrow X \times Y$ defined by g(x) = (x, f(x))is c-continuous.

The Corollary gives a somewhat improved version of Theorem 11 of [5]. The converse of Theorem 2.1 does not hold as the following example shows.

EXAMPLE 2.2. Let R be the reals with the usual topology and I = [0, 1] have the subspace topology. Define $f_1: I \rightarrow R$ and $f_2: I \rightarrow R$ as

$$f_{1}(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 < x \le 1 \end{cases}$$
$$f_{2}(x) = \begin{cases} 1 & \text{if } x = 0 \\ \frac{1}{x} & \text{if } 0 < x \le 1. \end{cases}$$

and

Now define $f: I \to R \times R$ by $f(x) = (f_1(x), f_2(x))$. Then it is easily seen that f is c-continuous, but f_1 is not c-continuous.

THEOREM 2.3. For each $\alpha \in A$, let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a function and let Y_{α} be locally compact. Define $f: \prod_{\alpha} X_{\alpha} \to \prod_{\alpha} Y_{\alpha} as f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$. If f is c-continuous then each f_{α} is c-continuous.

PROOF. Let K_{β} be a closed compact subset of Y_{β} and let $\{y_{\alpha}^{0}\}$ be a point in the range of f. Then, since each Y_{α} is locally compact, there exists an open U_{α} containing y_{α}^{0} such that $\operatorname{cl}(U_{\alpha})$ is compact. Hence, $K_{\beta} \times \prod_{\alpha \neq \beta} \operatorname{cl}(U_{\alpha})$ is a closed compact subset of $\prod_{\alpha} Y_{\alpha}$. Therefore, $f_{\beta}^{-1}(K_{\beta} \times \prod_{\alpha \neq \beta} \operatorname{cl}(U_{\alpha})) = f^{-1}(K_{\beta}) \times \prod_{\alpha \neq \beta} f_{\alpha}^{-1} \operatorname{cl}(U_{\alpha})$

x

is closed in $\prod_{\alpha} X_{\alpha}$ by Theorem 2 of [5]. It follows that $f_{\beta}^{-1}(K_{\beta})$ is closed in X_{β} so that f_{β} is *c*-continuous, again by Theorem 2 of [5].

The boundedness of a *c*-continuous function plays an important role in determining its continuity as shown by our next theorem.

THEOREM 2.4. Let $f: X \rightarrow Y$ be a c-continuous function from a space X into a metric space Y which has the property that closed bounded sets are compact. If f is bounded on an open $U \subset X$, then f is continuous at every point of U.

PROOF. By Theorem 2 of [3], $f|U:U \rightarrow Y$ is *c*-continuous, and, since *f* is bounded on *U*, f(U) lies in a closed bounded, hence compact, subset of *Y*. Theorem 5 of [3] then gives f|U continuous.

This theorem tells us, for instance, that if $f: X \to R^n$ is *c*-continuous and if for each point $x \in X$ there exists an open set U containing x such that f is bounded on U, then f is a continuous function.

Another theorem that has application in the reals follows Definition 2.5.

DEFINITION 2.5. [2] The space X has property k_2 at $p \in X$ if for each subset A having p as an accumulation point, there is a subset B of A and a compact set $K \supset B \cup \{p\}$ such that p is an accumulation point of B. The space X is a k_2 -space if it has property k_2 at each of its points.

THEOREM 2.6. Let $f: X \to Y$ be c-continuous where X and Y are Hausdorff and X has property k_2 at $p \in X$. If f is compact preserving, then f is continuous at p.

PROOF. The function f has closed point inverses by Theorem 2 of [5] and the continuity then follows from Theorem 4.4 of [2].

THEOREM 2.7. Let X be regular and locally compact and let Y be locally compact and Hausdorff. Then $f: X \rightarrow Y$ is c-continuous if and only if one of the following conditions holds:

- (a) f has a closed graph
- (b) f is locally closed [2] and has closed point inverses.
- (c) f maps compact sets onto closed sets and has closed point inverses.

PROOF. By Theorems 7 and 8 of [5], f is c-continuous if and only if f has a closed graph. Theorem 3.11 of [2] then gives the conclusion.

DEFINITION 2.8. [8] Let $f: X \rightarrow Y$ be a function and $p \in Y$. Then the set of

•

.

.

limit points of f at p, denoted by L(f;p) is the set of all points $y \in Y$ such that there exists a sequence (x_n) in X converging to p for which $(f(x_n)) \rightarrow y$.

THEOREM 2.9. If $f: X \rightarrow Y$ is c-continuous and Y is Hausdorff, then $L(f;p) = \{f(p)\}$.

PROOF. Suppose $y_0 \in L(f;p)$ where $y_0 \neq f(p)$. Then there exists a sequence $(x_n) \rightarrow p$ for which $(f(x_n)) \rightarrow y_0$. Since Y is Hausdorff, there exist open disjoint sets U and V containing y_0 and f(p), respectively. Also, there exists an $n_0 \in N$ such that if $n \ge n_0$, then $f(x_n) \in U$. Thus $\{f(x_n) | n \ge n_0\} \cup \{y_0\}$ is a closed compact set whose inverse under f is not closed because it does not contain p. This contradiction to Theorem 2 of [5] shows $y_0 = f(p)$ so that $L(f;p) = \{f(p)\}$.

COROLLARY 2.10. Let X be first countable, Y Hausdorff and $f: X \rightarrow Y$ c-continuous. Then f is continuous at $p \in X$ if and only if f has an at worst removable discontinuity at p.

THEOREM 2.11. Let $f: X \rightarrow Y$ be a c-continuous function from the first countable space X into the first countable countably compact Hausdorff space Y. Then f is continuous.

PROOF. Suppose f is not continuous at $p \in X$. Then the first countability of X gives the existence of a sequence $(x_n) \rightarrow p$ such that $(f(x_n)) \rightarrow f(p)$. Thus, there exists an open set V containing f(p) such that for any $n_0 \in N$, there is an

 $n \ge n_0$ such that $f(x_n) \notin V$. Consequently, there is a subsequence $(f(x_{n_i}))$ of $f(x_n)$ on Y - V which accumulates because Y is countably compact. Call the point of accumulation b and note that $b \in Y - V$ so that $b \ne f(p)$. The first countability of Y now gives, by Theorem 6.2 (2) of [1, p.217] a subsequence $(f(x_{n_i}))$ of $(f(x_{n_i}))$ which converges to b. Thus, $b \in L(f;p)$. But this contradicts Theorem 2.9 and we conclude that if $(x_n) \rightarrow p$, then $(f(x_n)) \rightarrow f(p)$ showing f continuous at p.

Theorem 2 of [3] shows that a *c*-continuous $f: X \to Y$ may be restricted to any subset *A* of *X* and the resulting function $f|A:A \to Y$ will also be *c*-continuous. However, *c*-continuous functions may not, in general, be restricted in the range. That is, if $f: X \to Y$ is *c*-continuous, then $f: X \to f(X) \subset Y$ need not be *c*-continuous as is shown by the next example.

EXAMPLE 2.12. Let Y be the set of reals $[0,\infty)$ and let σ be the topology on Y generated by sets of the form (r,∞) for r>1, together with the sets $\{1\}$ and

[0,1) as a base. Note that Y is not Hausdorff and the only open sets with compact complements are Y, $[0,1) \cup (1,\infty)$, $(1,\infty)$ and $[1,\infty)$. Let $X = \{1,2,3\}$ with topology $T = \{\{1\}, \{2,3\}, \{1,2,3\}, \phi\}$ and define $f: X \to Y$ by f(x) = x. The function f is c-continuous. Now give $f(X) = \{1,2,3\} \subset Y$ the subspace topology $\sigma_{f(X)}$ of Y. This topology is $\sigma_{f(X)} = \{\{1\}, \{3\}, \{2,3\}, \{1,2,3\}, \phi\}$. Observe that $\{3\}$ is open in $(f(X), \sigma_{f(X)})$ and has compact complement, but $f^{-1}(\{3\}) = \{3\}$ is not open in (X, T) showing $f: X \to f(X)$ is not c-continuous.

The following theorems give conditions under which we may restrict to f(X).

THEOREM 2.13. Let $f: X \rightarrow Y$ be a c-continuous function from a space X into a Hausdorff space Y. Then $f: X \rightarrow f(X) \subset Y$ is c-continuous.

PROOF. Let $U \subset f(X)$ be an open subset of the subspace f(X) such that f(X) - U is compact in the subspace f(X). Then f(X) - U is a compact subset of Y and, since Y is Hausdorff, f(X) - U is closed in Y. Thus, V = Y - (f(X) - U) is open in Y and has a compact complement. The *c*-continuity of f gives $f^{-1}(V)$ open in X. Now, noting that $f^{-1}(V) = f^{-1}(Y) - f^{-1}(f(X) - U) = X - (f^{-1}(f(X))) - f^{-1}(U) = X - (X - f^{-1}(U)) = f^{-1}(U)$, we conclude $f: X \to f(X)$ is *c*-continuous.

THEOREM 2.14. Let $f: X \rightarrow Y$ be c-continuous and suppose $f(X) \subset Y$ is closed. Then $f: X \rightarrow f(X)$ is c-continuous.

PROOF. Let $U \subset f(X)$ be open in the subspace f(X) where f(X)-U is compact in the subspace f(X). Now f(X)-U is also closed and compact in Y. Thus V=Y-(f(X)-U) is an open set in Y having compact complement. Therefore, $f^{-1}(V)=f^{-1}(U)$ is open showing $f:X \rightarrow f(X)$ is continuous.

THEOREM 2.15. Let $f: X \rightarrow Y$ be c-continuous and suppose the graph of f, $G = \{(x, f(x)): x \in X\}$, is closed in $X \times Y$. Then $f: X \rightarrow f(X)$ is c-continuous.

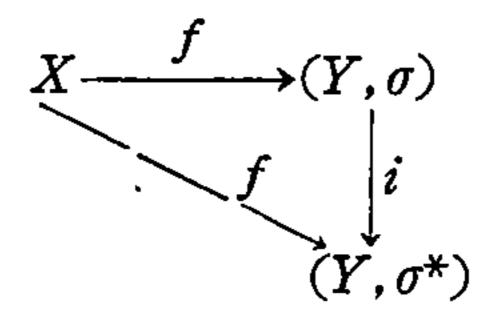
PROOF. We first show the graph of $f: X \rightarrow f(X)$ is closed. Then by Theorem 7 of [5], $f: X \rightarrow f(X)$ is c-continuous.

Let $(x, y) \notin G$ where $(x, y) \in X \times f(X) \subset X \times Y$. Then there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $(U \times V) \cap G = \phi$ because G is closed in $X \times Y$. Let $W = V \cap f(X)$. Then W is open in the subspace f(X), contains y, and $U \times W \subset U \times V$ which implies $(U \times W) \cap G = \phi$. Thus G is closed in $X \times f(X)$ showing $f: X \to f(X)$ has a closed graph.

3. C^* -continuous functions

We begin our considerations of c^* -continuous functions $f: X \to Y$ by some observations concerning the space Y. For any topological space (Y, σ) , the collection of open sets having countably compact complements form a base for a new topology σ^* on Y. The reason is that if U and V are open and have countably compact complements, then their intersection has a countably compact com-

plement as may be shown by use of the equality $Y - (U \cap V) = (Y - U) \cup (Y - V)$. Of course, $\sigma^* \subset \sigma$ and (Y, σ^*) is always a countably compact space. If we consider the following diagram for any function f and any spaces X and (Y, σ) ,



we see that $f: X \to (Y, \sigma)$ is c*-continuous if and only if $f: X \to (Y, \sigma^*)$ is continuous. nuous. Also, $i: (Y, \sigma) \to (Y, \sigma^*)$ is continuous and i^{-1} is c*-continuous.

These remarks lead us to observe that a c^* -continuous fundamental group may be defined analogous to the *c*-continuous fundamental group of [4] and an investigation similar to that one made by making heavy use of the above diagram and its implications.

The remarks also lead us to an immediate generalization of Theorem 1 of [7].

THEOREM 3.1. Let X be a space and $\{A_{\alpha}: \alpha \in A\}$ a cover of X such that

either (a) the sets A_{α} are all open

or (b) the sets are all closed and form a neighborhood finite family. If $f: X \to (Y, \sigma)$ is a function such that $f | A_{\alpha}$ is c*-continuous, then f is c*-continuous. PROOF. Since each $f | A_{\alpha}: A_{\alpha} \to (Y, \sigma)$ is c*-continuous, our remarks about the above diagram show that $f | A_{\alpha}: A_{\alpha} \to (Y, \sigma^*)$ is continuous. Theorem 9.4 of [1, Chapter 3, p.83] then gives $f: X \to (Y, \sigma^*)$ continuous. Using the remarks following the diagram again, we see that $f: X \to (Y, \sigma)$ is c*-continuous.

Since an analogous diagram holds for *c*-continuous functions, we note that Theorem 4 of [3] could be generalized in the same manner as Theorem 3.1. Professor Park in [7] defines a space X to be locally countably compact if it is Hausdorff and each point has a relatively countably compact neighborhood, i.e., for each $x \in X$ there is an open $U \subset X$ containing x such that cl(U) is countably compact. We now show that the regularity condition on Y in Lemma 8 of [7]

may be removed. Upon so doing, that Lemma may be stated as follows:

THEOREM 3.2. Let $f: X \rightarrow Y$ be c*-continuous and let Y be a locally countably compact space. Then G(f) is closed.

PROOF. Let $x \in X$ and let $y \in Y$ where $y \neq f(x)$. Since Y is Hausdorff, there is an open V containing y such that $f(x) \notin cl(V)$. The local countable compactness of Y gives the existence of an open set W containing y such that cl(W) is

countably compact. Thus, $V \cap W$ is an open set containing y and, since closed subsets of countably compact spaces are countably compact, $cl(V \cap W) \subset cl(V) \cap$ cl(W) shows $cl(V \cap W)$ is countably compact and furthermore does not contain f(x). Therefore, $Y-cl(V \cap W)$ is an open set containing f(x) whose complement is countably compact. The c^* -continuity of f now gives an open $U \subset X$ containing x such that $f(U) \subset Y - cl(V \cap W)$. Lemma 1 of [6] then shows G(f) is closed.

Theorem 3.2 will now allow the regularity condition in Theorem 9 of [7] to be dropped.

Our next theorem parallels Theorem 2.1.

THEOREM 3.3. For each $\alpha \in A$, let Y_{α} be a locally countably compact space and let $f_{\alpha}: X \to Y_{\alpha}$ be c*-continuous from a first countable space X into Y_{α} . Then the function $f: X \to \prod_{\alpha} Y_{\alpha}$ defined by $f(x) = \{f_{\alpha}(x)\}$ is c*-continuous.

PROOF. Theorem 3.2 gives the graph of each f closed and the proof of Theorem 2.1 shows the graph of f is closed. Our conclusion follows from Theorem 4 of [7].

Since the concepts of compactness and countable compactness are the same in paracompact spaces, Example 2.2 shows that if $f: X \to Y_1 \times Y_2$ is *c**-continuous, then each $f_i: X \to Y_i$ need not be *c**-continuous.

If $f: X \to Y$ is c*-continuous, then $f: X \to f(X)$ need not be c*-continuous as Example 2.12 shows. The next three theorems give conditions under which such a restriction on the range may be made

THEOREM 3.4. Let $f: X \rightarrow Y$ be a c*-continuous function from a space X into a first countable Hausdorff space Y. Then $f: X \rightarrow f(X)$ is c*-continuous.

PROOF. The proof is similar to that of Theorem 2.13.

Note that the space Y of Example 2.12 is first countable, thereby showing the necessity of the Hausdorff condition in Theorem 3.4.

.

THEOREM 3.5. Let $f: X \rightarrow Y$ be c*-continuous and suppose $f(X) \subset Y$ is closed. Then $f: X \rightarrow f(X)$ is c*-continuous.

PROOF. The proof is analogous to that of Theorem 2.14.

220

THEOREM 3.6. Let $f: X \rightarrow Y$ be a c*-continuous function from the first countable space X into a space Y and suppose the graph of f is closed. Then $f: X \rightarrow f(X)$ is c*-continuous.

PROOF. As in the proof to Theorem 2.15, we can show the graph of $f:X \rightarrow f(X)$ is closed in $X \times f(X)$. By Theorem 4 of [7], $f:X \rightarrow f(X)$ is c^* -continuous.

For a function $f:X\to Y$, the graph function $g:X\to X\times Y$ is defined as g(x) = (x, f(x)) for each $x \in X$. In [5] conditions were given as to when *c*-continuous functions would have *c*-continuous graph functions. Conditions were also given as to when the *c*-continuity of the graph function would imply the *c*-continuity of the original function. Theorems 10 and 11 in [5] would, of course, apply to c^* -continuous functions since the concepts of compactness and countable compactness are equivalent in metric spaces. As in [5], we leave open the question of the existence of $a \cdot c^*$ -continuous $f:X\to Y$ such that $g:X\to X\times Y$ is not c^* -continuous $X\to X\times Y$ implies the *c**-continuity of $f:X\to Y$.

THEOREM 3.7. Let $f: X \rightarrow Y$ be a function, X countably compact and first countable and Y first countable. If the graph function $g: X \rightarrow X \times Y$ is c*-continuous, then f is c*-continuous.

PROOF. Let $x \in X$ and let V be an open set containing f(x) having countably compact complement. Then $P_Y^{-1}(V)$ is open in $X \times Y$ and, since X and Y - Vare countably compact and first countable, $X \times (Y - V) = P_Y^{-1}(V)$ is countably compact. Thus, $P_Y^{-1}(V)$ is an open set in $X \times Y$ having countably compact complement. Therefore, there exists an open U containing x such that $g(U) \subset P_Y^{-1}(V)$. It follows that $P_Y(g(U)) = f(U) \subset V$ so that f is c*-continuous.

> The University of Arkansas, Fayetteville, Arkansas, 72701

221

REFERENCES

[1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1956.

•

[2] R.V. Fuller, Relations Among Continuous and Various Noncontinuous Functions, Pacific J. of Math., Vol.25, No.3 (1968) pp.495-509.

- [3] Karl R. Gentry and Hughes B. Hoyle, III, c-continuous Functions, The Yokohama Math. Journal, Vol. XVIII No. 2 (1970) pp. 71-76.
- [4] Karl R. Gentry and Hughes B. Hoyle, III, c-continuous Fundamental Groups, Fundamenta Mathematicae 76 (1972) pp. 9–17.
- [5] Paul E. Long and Michael D. Hendrix, Properties of c-continuous Functions, Yokohama Math. Journal, to appear.
- [6] Paul E. Long, Functions with Closed Graphs, Amer. Math. Monthly, Vol. 76, No. 8, (1969) pp. 930—932.
- [7] Young Soo Park, c*-Continuous Functions, J. Korean Math. Soc.8 (1971) pp. 69-72. [8] William J. Pervin and Norman Levine, Connected Mappings of Hausdorff Spaces, Proceedings of the Amer. Math. Soc., Vol.9 (1958) pp. 488-495.

•

.

.

• •

. •

-

,

.

. . -•