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ON DECOMPOSITION OF RECURRENT CURVATURE TENSOR FIELDS
IN GENERALISED FINSLER SPACES

By Surendra Pratap Singh

Some aspects of generalised Finsler spaces were studied by A.C. Shamihoke

1]". Author and Sinha [2) have defined recurrent generalised Finsler spaces and
dealt with the properties of the curvature tensor and recurrence vector fields in it.

In the present paper author decomposes the curvature tensor fields K;kh (Art. 1)

and K;kk(Art. 2 & 3) in the recurrent generalised Finsler spaces (RGFn). He deals

with the important properties of decomposition tensor fields and the recurrence
vector field in RGFn. It is noted here that if the skew symmetric parts of the
metric tensor field is taken to be zero, that is, if the skew symmetric parts

of connection parameters Pj; and A;k 1Is zero, the results obtained in RGFn

being similar to that of recurrent Finsler spaces [3].
0. Preliminaries

Let us consider an z#-dimensional Finsler space Fn endowed with a local coordinate

system x° % in which distance function F(x,dx) satisfies the following properties

(i) F(x,dx) is continuously differentiable at least four times in its 2z arguments.
(i1) F(x,dx) 1s positive provided all dx’ are not zero.

(i11) F(:c dx) is positively homogeneous of the first degree m dx’.

(iv) 6? F“‘(x x) & E‘T 3)>O with Z(é) #0 for any given x.

The metric tensor g;j (x,x) of Fn is considered here as non-symmetric in

general. The round and square brackets will be used to denote its symmetric and
skew-symmetric parts reSpectwely For example

1
gun=—58:1+8&;i)

and

1
g (i) =5 (&ij ~&ji)-

il

i) Numbers in brackets refer to the referrence at the end of the paper
2) Indices 7,7,k, - always take values from 1,2, ---; 7.
3) 9;=a/0x.
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The conjugate tensor of g i is represented by gij and hence g iy gszaf. The
space endowed with this metric tensor are known as generalised Finsler spaces

and we denote them by GFn.

The connection parameters for the locally Minkowskian and locally Euclidean
*

GFn are denoted by P;;; and I’ P respectively. Let X' be a vector field of GFn
then the two processes of differentiation are defined as under.

4)
; ; P B A
0.1) X,f =aj X +3}.x 5k.X "‘ij X
and
i A RP 5y S
(0.2) X Ij—an I"kj 0, X %‘—H‘MX ,
where
'] %2 ] *h .7
F].k =I"jk -I—thl’ka
and
Cz'jk— i 5'?;,& Fz(x:--f)-
The commutation formulae involving the curvatue tensor fields are given by [1]
i whot gyt g
(0. 3) . ZX, [7k] =X Kkkj 2X,h‘d[jk]
and
; el ok Byt ;
(0. 4) 2X'| =0, X Koy P+ XK —2X"| A1
where | | |
F*z :P*z =Az
[ 74] [ /%) [7%]
and
i g o
(0.5) Kokk_kahZ ?
We also have
. % ik
(0.6) 0, j;xj:c =0.
The unit vector field 7 satisfies the_relation
S B
(0.7) zjz%: ﬂ';;: .
We have noted that
(0. 8) I i= 0.
The identites satisfied by the curvature tensor fields of GFn are stated below:
] ) ; il
(0.9) Kjkk_l—Kkkj_l—Ekjk:zA[jlklh] . 18

where (;) denotes covariant derivative based upon the connection parameter

4) 3;=3/x.
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il
(0.10) Kkk+Kkk;+Kk;k 2A[j|k|h]££g ,

where () denotes covariant derivative based upon the connection_ parameter given
by R.,.=I

jhi?
(0. 11) | Kj’kk !_'_Kj'iz’ !z+[?;!k.h +2 [E;mkPm]
+K Jth*:] K ;'mfP;Z] }=0,
(0. 12) K;k;;lz ;m' +K. lkl +F(K:;zfz3mr;f
okta F +K 10 fu) ZCK [kh]
+K jmk [;;:]+K jmkA [2£]
and
(0.13) B o=-F K =-K

Jrh JhE’ jkh Jjhk °
Sinha. and Singh [2] have defined recurrent curvature tensor field in GFn as

follows:
The GFn, in which there exists a non-zero vector », such that the curvature

tensor fields _ff;.kk and K;.kh satisfy the relations

(0. 14) Jk,, ;—~v,1?
and
i i
(0. 15) Kol 1=0,K 4,

respectively, are said to be recurrent GFn (RGFn in short) and the curvature
tensor fields of these spaces are called recurrent curvature tensor fields. Here v,

1S known as recurrence vector field.

1. Decomposition of curvature tensor field R‘ ik

Let us consider the decomposition of curvature tensor field R‘;kh of RGFn in the

following form
(1.1 Ry=Xay,,

where 2 is decomposition tensor field and X  is a vector field such that

(1.2) Xiv,‘;:l.
From(1.1), the equation (0.13) yields
(1.3) i ~ gy,
We further decompose the tensor field &y @s under

{1.4) O i =V 0
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which implies
(1.4) a a,=—a,
in view of (1.3).
T}*e equation (0.9) can be written as
2l
(1.5) X [0 gt s+ il =245 10 &

Transvecting (1.5) by v, we get

{
(1.6) jkk+akfz]+ahjk 24[”}3”2]: r

with the help of (1.2).
Thus accordingly we have

THEOREM 1.1. In RGFn, the decomposition tensor field salisfies the identity

/
ajkh—l_akkj_l_akjk_zd[j|k|;¢] ;;7" .

Under the decomposition (1.1), the Bianchi identity (0.11) takes the form

. * *mn
(1.7) vy, o0, ool +2la P[m]-l— el (o) T i1 =0

with the help of (0.14).
Now under the decomposition (1.4), the equation (1.7) reduces to

*m *m

jmk

from (1.6), the equation (1.8) can be ertten as

*m *m
(1.9) A[Zlklh] m” +a¢:zkp k) T X Py (k1) ta,, P [/2k] =0.
By virtue of (1.4)a, the ‘equation (1.9) ylelds
*m m
(1.10) aka [Hz] 2P (e1] T P 123 =4 [kl : m¥

Hence we have

THEOREM 1.2. In RGFn, the decomposition tensor field satisfies the following
tdentity

m *m *m m
P[lk] +aka[k1] +a£mP[hk] Z‘A[Illzlh]: m?

By virtue of (1.3) and (1.4), the equation (1.6) reduces to
I

which can be written as
!
(1.12) %in= 200 T A jian: 21

Transvecting (1.12) by X' and usmg (1.1), we get

(1.13) K‘th—ZX [v[hafk] +A[1lk|k] fv]
Thus we can write

THEOREM 1.3. In RGFn, the curvature tensor field K 'kh can also be expressed
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in terms of decomposition tensor field o, as under

) ? {
B jun=2X (000 74 s . 21

Differentiating (1.1) covariantly and noting (0.14), we obtain

i ) i
(1.14) ”szkhzx, [Pyt Oy -
From (1.1), it reduces to
: i
(1.15) X (vla'jkh—ajkh’ !)=XJ O
If we consider X° to be covariant constant, the equation (1.15) yields
iy
(1.16) X (0~ D=0.
Since X' is an arbitrary vector field, hence we have
(1.17) O 1=V e
Conversely if (1.17) is true, the equation (1.14) takes the form
; ; i
(1.18) UK =X, | Xt X 0,0
By means of (1.1) it reduces to
i
(1.19) X,,ajkh=0.

Since iz 7 O, hence we get
(1.20) X', =0,

which implies X  is covariant constant.
Accordingly we have

THEOREM 1.4, In RGFn, the necessary and sufficient condition for the
decomposition tensor field O to be recurrent is that the vector field X' is covariant
constart,

Now, taking covariant differentiation of (1.2) we get
(1.21) X' 0+Xv =0.

From (1.21) we conclude

COROLLARY 1.1. In RGFn, 1If X i is covariant constant it implies that the
recurrence vector field v, is also covariant constant.

Considering covariant differentiation of (1.4) and using (1.17), we obtain

(1.22) D=V 1%y TV %% 1,
From (1.4) and Cor. 1.1, the equation (1.22) becomes
(1.23) ViV 0, =V, 0y 1 o

Since v; #% (0, we have

(1.24) Oy =V,
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Hence we write

THEOREM 1.5. In RGFn, if the decomposition temsor field c. ik s recurrent,

then the tensor field «,, is recurrent and the comverse is also true under the
assumption thet the vector X' is covariant comstant.

In view of (1.17) and (1.4) the equation (1.7) becomes
(1.25) «; ikh, T Jhl, k+aﬂlz kh2( _zkm [lk] -I-Cl.’ P[H] +aﬂmP[hk]
Also by means of decomposition (1.4), the equatlon (1.7) gives

(1.26) v lvoy, too,+o0,+2ea,, P "’"a’ P ) T i [:;?])] -

Transvecting (1.26) by X’ and makmg use of (1.2), (1.4)a and (1.24), we
obtaln

*m ol 77
(L.27) oy, ;Fay, oy, , =210, P gy + 0, Py, +a,,P [hk]]
"Thus we have

THEOREM 1.6. In RGFn, the decomposition tensor fields Xy AR Oy satisfy

the Bianchi identities

*n
gy T Xy p Ty =2 [P, (1h] ;km"'P & Ejnm T Wz]]

and
b /74

eh, 170, kT g =2 [P 77} X ™ P k!] o TP (11 X )

o
respectively with the condition that X' is covariant constant.

Taking covariant differentiation of (0.14) and commuting the indices / and m.
we get

) i Z
(1.28) Kithim =K jpn i = =V DK

With help of commutatlon formula (0.3) it takes the form

el
(1 29) X 7k rlm_Krthﬂm_K Kk{m—Kjer:klm_szkh f‘d[!m] _(vl,m*vm, !)Kjkk
From (1.1),(1.2) and (1.4), the equation (1.29) becomes

(1. 30) —Xz.varvka alm-—X v}Xz;a’ ch-—2vaA crkh-—“Xivj(vzlm—-v

} 7 im jor [im] m, l)akh'

Transvecting (1.30) by X‘? v, and noting (1.4) a, we have

T
(L.31) (v, — 0,0, )X ), =20, Ur‘d (m] — = (V) =V )y

Now if ak’,Xr=O, then the equation (1.31) gives

(1' 32) kkvrd [lm] [m, {] akh'
But «,, is arbitrary tensor field, therefore the above equation reduces to
T
(1.33) v, 4 im] =Y (m, 1"
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Conversely if, the equation (1.33) is true, equation (1.30) vields

(1.34) X' X0 (0,00, 00,2, ) =0.
Multiplying the equation (1.34) by X/ v. and noting (1.2) and (1.4) a we obtain
(1.35) Xra py=ap, *X7.
Transvecting the equation (1.35) by X kX"z, we get
(1.36) athh'———arka,
which implies
“‘ o X'=0

Hence we have

THEOREM 1.7. In RGFn, the necessary and sufficient condition for the relaiion

to be true is that

2. Decomposition of curvature tensor field

In RGFn, we decompose the curvature tensor field K;.kh as under

' ] )
(2.1) Ko =% By

where #8;';:& 1S a homogeneous decomposition tensor field of degree —1 in i
From (0.13) and (2.1), we have

(2.2) Bjkh: —'8 Jhi"
Under the decomposition (2.1), the equation (0.5) yields
(2.3) Bokn= jkhzf
hence we can write
(2.4) - K o= Boi -
In the equation (2.4) contracting the indices 7 and %, we obtain
(2' 5) Kok:ﬁak’
where
h
& ok:ﬁ oki* *
We also have
(2' 6) 5 okh ™ _‘8 ohk’
Now contracting the indices 7 and % in the equation (2.1), we get
(2.7) K =B

where
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N
(2.8) ﬁ'}.khx —‘Bjk.
By virtue of decomposition (2.1), the equation (0. 10) gives
g _ il

Contracting the indices Z,%2 and using (0.13), (2.3) and (2.8) in the equation
(2.9), it yields

—l i
(2.10) Boit™"F By TAij1mnag 1 -

Accordingly we have

THEOREM 2.1. In RGFn, the decomposition tensor field 50;‘1& can be expressed
in the form

2 71
430;' —F [‘G[kf]_}—d[flkli]ifg I

Considering covariant differentiation of (2.1) and noting (0.7) and (0.15), we

obtain
) PP
(2.11) VK =% B
which yields
(2.12) 1855 =Binl; -

Transvecting the equation (2.12) by / and simplifying the result by means of
(0.7) and (2.3), we get |

(2.13) V18011 = Born !y + |
Also contracting the indices 7,% in the equation (2.11) and using (0.7), (2.1) and
(2.8) it gives

(2.14) vlﬁjk:lgjklf .
From the equation (2.13), we also have

V8, = 0By «

Thus we have

THEOREM 2.2. In RGFn, the decomposition tensor fields B, B,.. B, and B,

behave like recurrvent tensor fields.

Differentiating (2.14) covariantly with respect to the index m and commuting
the indices /,m, we have

(2.15) (V1) 1=V B, =28 [im)
By virtue of (0.4), (2.1), (2.4), (2.8) and (2.14), the equation (2.15) reduces
to

. B , .pl 2
(2.16)  (v,],,=v,,128;,=B;F B,,,— By Bitm™ B % Bypm =20 BiA” 1y -
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Transvectng (2.16) by / and noting (0.7) 1and (2.3), we obtain
| p _ Y
(2' 17) 2 [v[!]m] +va [Im]] ‘Sak_ o opx 5ktm’

where g = ﬁ}kzj . If we suppose that S, psép =0, the equation (2.17) takes the
following form
p _
(2.18) (9 1y T A 11y ] =05
since 3, 7 O.

Conversely if (2.18) is true, the equation (2.17) reduces to

(2.19) B, 5% Butrs =O-
But 3,,, # 0, therefore we have
(2. 20) 8,5 =0.

Hence we have

THEOREM 2.3. In RGF&n, the necessary and sufficient condition for the relation

o be true is that

By means of (0.15), (2.1) and (2.4), the Bianchi identity (0.12) takes the

form
(2.21) £'0,8,,+ 50,8+ 50,8+ 5" F Byl + B it FBoiOrnl i)
=27’ Ié j?}:lAT;eh] _I_BjmkATkﬂ +‘8jmk‘dﬁk] I
Transvecting (2.21) by # and simplifying by virtue of (0.6) and (2.3), we have
(2.22) 98,35, 0480480 = 2B s (1t + Bt ) B a1

In view of (2.13), it becomes

- m ” m
(2' 23) ‘Bofekl I+ ‘Bokf | k_{_‘Bolk\ B 2 [‘Baml‘d [Ah] +‘80mk‘d [A!] +‘80mkA [{E] ] ’
Accordingly we write |

THFOREM 2.4. In RGFn, the decomposition tensor field satisfies the following
Bianchi identity |

. n m | m
Bokhll+‘80}zflk+‘golklh" 2 [‘80?131‘4 [%h] +,8mkz1 [7] 5 omk‘d [{R] I

3. Ancther decomposition of curvature tensor field K;.kh

In this section the curvature tensor field K;-kh is decomposed in the following

manner
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] ?
(3.1) Koy =X"0.0

where 6jkk is a suitable decomposition tensor field and X is a vector field such

that X zyz.—-—-l,, where v, is recurrence vector field. Interchanging the indices %, % in
(3.1) and using (0.13), we get

(3.2) Oitn= —0jppe
Transvecting (3.1) by / / and noting (0.5), we have
(3.3) 0,r =0t
where
(3.4) K, =X0,.
The decomposition tensor field 6 ,, satisfies the identity
(3.5) Ooen= ~ Opit

in view of (0.13).
The identity (0.10) can be written in the form
] . il
(3.6) X s Ot Ohin) =24 1411308
With help of (3.1)

Transvecting the equation (3.6) by », and noting (1.2), we get

[

(3.7) Oien O+ O =241 j 11y s -

Thus we have

THEOREM 3.1. In RGFn, the decomposition tensor field O inn S@lisfres the identity

J
ejkh+6kkj+6hjk:2‘d (jik\R)ilY -

Transvecting (3.7) by Y and simplifying the result by means of (3.2) and(3.3),
we obtaln

. [,]
(3.8) 5akh“‘25[hk]o"'2‘4[jlklh] e
where
] __
O it =0 o
Multiplying the equation (3.8) by X' and using (3. 4), we have
i vt 7 I
(3.9) K A =2X [G[kk]oﬂ—ldmklhwv].
We have

THEOREM 3.2. In RGFn, the curvature tensor field szh can be expressed in
terms of the decomposition 0,, as under:

P el i i
K o =2X [5[%10+l 4 ivmmu? 1+
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Taking covariant differentiation of (8.1) and making use of (0.15), we obtain

(3.10) v, K ;.@th ‘Zeykh_l_x 5;#:}:1:
Considering X* to be covariant constant and noting (3. 1), the equation (3. 10) gives,
(3.11) ”ﬁjk};: jkkl,.
Transvecting (3.11) by Y and taking into consideration (0.7) and (3.3), we get
(3.12) 0,0 o1 = o 1 '
Conversely if (3.11) 1s true, the equation (3.10) reduces to
(3.13) | lejkk_X lzﬁjkk—l-X 0,0 e
By virtue of (3.1), the equation (3. 13) yields
(3.14) | Jka | ,=0.
Since 0, # 0, therefore we have
(3. 15) X'|,=0,

that is X’ is covariant constant.
Hence we conclude

THEOREM 3.3. In RGFn, the necessary and sufficient condition for the decom-
position tensor fields ﬁjkk and 0,, to be recurrent is that the vector field X ‘is

covariant constarnt,

In view of (3.1),(0.15) and (3.4), the Bianchi identity (O 12) becomes

(3 16) X [v 5 v 0}}1! —l-t) Y z'k] +FX wakkamrﬂ eohiamr Rk 60!12 " k]]

_—2X [0 jmk [k!]—l—ajmld[kh] -}-t‘?_;u*:rz}z‘{I [Ik]]

Transvecting the equation (3.16) by / it gives
(8.17) 0,0, T 00,4, +0,0,,=210,,,4 Ih1|+6mid [kh]+9amh [Ik]]
by means of (0.6) and (3. 3).

Now, under the assumption that X  is covariant constant, the equation (3.17)
reduces to

(3-18) Opp |y + 00| 00 ,=210,,,4 [hl]_l-@am! [kh]+5 A[!k]]
which is Bianchi identity for the decomposition tensor field 6 ,.. Accordingly we

omk

have,

THEOREM 3.4. In RGFn, the decomposition lensor field satisfies the ‘Bianchs
1dentity

Ot 1T O0ps | 4+ 0, 1,=210,,,,4 [k!] T aomld (k) T @amhd (k] I,
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under the assumption that X' is covariant constant, which is a necessary and sufficient
condition for 0, to be recurrent.
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