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1. Introduction

Employing the operator x°D where D= c;i, Chak [4] defined the generalized

Laguerre polynomials by means of
Lia)(x)___x—cr—n—lex (xZD)n (xa'+1 e—:) . (1' 1)

Later, Al-Salam [1] characterized these polynomials in terms of the operator
0=x(142xD) and proved that

6" % =21 o7 1LV (x) . (1.2)

Recently, Mittal [7] observed that relations (1.1) and (1.2) can in fact be

derived from a more general operational representation. To this end he considered
the operator T,=x(k+xD), Fk being a constant and showed that polynomial set

TP@; n=0, 1, 2, 1}, [6],

TE:)(x)— nl, x %M p" Calldl (x)), (1.3)
p (x) being a polynomial in x of degree », admit the relationship

T(af+k—1)

vn

(x)= 7}, x 5T (%) T: [xae_p"@] (1.4)

in terms of the operator T,.

The question naturally arises, if these aforementioned characterizations can be
unified. This led us to define the operator T, = “(k+xD) and the introduction

of the pnlynomial set {ME:)(x, k,q); =0, 1, 2, -} in the form

M7k y=ra © 0T e ) (1.5)

where p (x) is a polynomial in x of degree 7,k and ¢ are constants.
In what follows, it shall be understood that
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M@ (x,k,q)= %1, g XM g pe(B) T:.q £~ ep”(‘t)] : (1.6)

~— LVH

For the sake of simplicity, in the present paper, we shall, however, confine

ourselves to the case when £2=0, viz, the polynomials

. ]. T T — Mu 'l']-
Mii:)(x,q)::—ﬁ!—x XN GP (I)Tz[xae ﬁ'(’"‘)],TZ“%?:::E:"T D (1.7)

which are connected with the polynomials M S) (x, k,q) by the relation
k
M P, =MD (2, b, . (1.8)

The study of the polynomials ij) (x,k,9) where p (x) will be replaced by

px’, for obtaining many nicer properties from the point of view of their utility,

will form the subject matter of a subsequent communication.

2. The operator T, " and its properties

We define the operator T, = x’(E+xD) and as a first consequence, note that

-t m ) Ca-t+tm-+
T, (x ):q”’( “+’§+k )jix e 2. 1)

where m 1s an integer, # a non-negative integer and « is arbitrary.

Further, by induction

n—1
T:'qzx”q jLIO (0+k+19), 0=xD (2.2)
so that when 2=0
Tm___nqnﬁl _
, =% ;Eo (0-+ig) . (2.3)

Next, assuming that a function f(x) has a Taylor’s series expansion, It follows

that the operator Tk’q satisfies the following formal rules:
F(T, ) s°f(0)} =2"F(T, ,+x'a} f(x) (2.4

F(T, M P f) = PFT, +2" g’ () f(x) (2.5)

and the analogue of the Leibnitz formula
Ty, (Fu0) =2 22 G (T, ;"0) (Ty @), Ty =% (1+1D) . (2.6)

For 2=0 and x=1 the above formula reduces to
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T )= 32 GI(Ty ") (T) - (2.7)
Further, note that (2.6) implies

etT" ‘(xuv) :x(em' “v) (em' %) (2.8)
and consequently with the help of (2.1), we have

ke '(anrm) = " (2.9)

and the general operational formula

(4 4

T (% F (1)} = % —* __|. (1
D) = £l ol ECED

We, then, prove that the operator T, , satisfies the operational relation

” (atk—q)

o t n a—n . # 4
2 Wi Ty @ ="4a) 0 flea) (2.11)
Therefore, in view of (2.1) |
1 I k
(al); ] 72 ”71 (aZ)l ( m+‘ ‘); }
F IT, |x =x F q gt (2.12)
A u T Rkaq 241 |
-(5#) ’ ' #L (46#);
and subsequently,
—(a’z)‘ | v _ 2 (B atrs -(“1)- atritk
F T, |x7e” =32 B2 77 F q x99t ((2.13)
‘ 1@ 1) j=0 J! Al (8, d

where (a,) stands for the sequence of 2 parameters Qg Ao, ***, 53 With  similar

interpretations for (8,)-

In particular, if we take (a'l)=(ﬁ#)—cx—k=0 and -
p+l=r—1=¢g—1=0, we have
oFi| =itk 1T [ =% " (P s atk, —2 ] (2.14)
Defining now T, , 28 the inverse of the operator T, . We obtain
_ —a—mq
i (x7H= (;‘ lzrmfk - (2.15)
and 1 logx
- {((A—@logx+1} =—>= (2.16)
x L
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Next, combining (2.1) and (2.15), we deduce

5 ml 5+/
<shq )m( y ﬂ)_ CEVE S+ o1
A 4 N A .
Tk.q X (Ck’—}i‘ +1)_ Ir:r+mq
q }il
where Sziq=yq(l—l—yDy) ,
and hence
i . ) B+Z -
P (@5, Siq ( yﬁ);"iz | (@,). ; ,_.,,
1@ Taa \ )8 00 ) g IO G
/) ' -
In particular, we have
AR PR E S
1=t == = —t(3/x)
T,.) \@ )75 24 o, T (2. 19)
i q i % _
SZ .\ yS J’S l-_,n, B+1
(1_.3 T!; )( a'): o ol ! —t(y/x)? |, (2. 20)
g X X X—R | 1.
L q P -
S. \UT)! 3 B+
(l-f T:q*) ! ) ya ______‘}’a {1+t(y/x)"} ¢ (2.21)
, X X
and |
—t/Thq — — T , R
¢ (x™)=x""F I__ 1; t/gx’ |. (2.22)
3. Operational characterization of the polynomials M Ei) (x, q)
Note that the formula (2.2) admits the following equivalent forms
(T, g +5°0) fx)=2""II (5 a+k+jq) f(x), (3. 1)
¢ i=0
and |
n—1
[Tk’q—l—xqa—-xﬁlpu’(x)]n % ﬂ (O+a+k—xp '(x)+iq. (3.2)

j=
If y is a sufficiently differentiable function of x, then (3.2) can also be expressed

dS

x—a'—nqeﬁu (I)T

n—1
L [Ty = [ G+a+k—x,®)+i0)y, (3.3)

On the other hand,
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— T - Du n—~-1 Y
[xa' b, (x) ]___xa+nqe p(x) 'n{) ((7+a-xpu’(x) +7q)y (3. 4)
f:

which by an appeal to (2.7) gives

o —pu (%) ? _’ian’ﬂq 5, = bu(x) g ()

N S
Tt? [x € y] :3=0 S! U(H—S)<x’ QDTqy . (3' 5)

Thus, comparison of (3.4) and (3.5) would yield,

n—1

Tl G+ta—xp,/(x)+i0y=n! = v M T (3.6)

and that of (38.3) and (8.6)
_sg

X k S —or—ng De(x)pm o —pu(
sg sl ME?:—S)) (%, 4) Tqy“ J'x e Tk.fi’[x ¢ %)y] ’ (3.7)

In particular, for y=1

M£f+k)(x, 7) = nl! x XM v (x)T:,q [x“e_p” (:r)] _ (3. 8)
In what follows, in view of (2.4) and (2.5), (3.8) can be written as

[Tk_q-{-xqcr—x”lpu’x]”-1=n! 2 ME:H)(J:, q), (3.9)
whereas, by a simple change of variable

T, (% P =g+ 1 0 (g (3. 10)

implying that
[Tk'q—}—xqa—-lxq“pu’(lx)]"-1=7z! x ME:M)(Z:»:, 7) . (3. 11>

Next, by operating on both sides of (3.8) with T:’q we have

— v ' s
Tzq[xa”qe pv (%) ME:Jrk)(x,QJ]: (m;z"'”)' gETntma, =9 (x)MS:M)(x,q) . (3.12)

and y=x"e"?" (%) and applying (2.6), we obtain

7 — Ju
T:’q[x{xﬂe"'?u(lx)} {xﬁe“ﬂv(ﬂi’:)}] ( ){TH m 38 — P #-")} {T;quae P (’h‘)}

Now, assuming #=x%¢"?" (4%)

or, alternatively, the operational formula

x—-a——ﬁ—l—nqepu(lx)+pu (ux) T:: xa+ﬁ+1 e—pu (Ax) = po (ptx)
= ! E MO (ux,q) Mo P, ) (3. 13)
Evidently, for A=gx=1, one obtains
M gf:ﬁﬂm (x, )= Z ffﬂ ;20( DMV, (3. 14)

m—
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4. Generating functions and recursion formulas

We demonstrate below, how the operator T, , can be employed to yield, in a

very simple manner, a number of generating relations and recursion formulas.
—k o P (x)

tTy, .

For instance, Operating by e on x~ , we get

OO m
tThg[ ax—Fk _P”(I)]_ t T X

ﬂ""ke—"py (I) ]
m-—O m‘

kq[

Thus, by an appeal to formulas (2.10) and (3.8) and replacing ¢ by x—i we are

led to the generating relation

(1_Qt) —a/q ePH (x)_p“ [x(l_qf)-lfq] — E th(a) (x q) (4 1)
. m=0 L ’ - -
Again, from (3.8),

T:' q [xcr—-ke—pu (J:)] ___xcx—k-l—nqe—pu (x)n! ME:)(I. 7).

tTl‘l g

Operating on both sides by e and by a simple change of variables, we get

the generating relation

> /mtn (o) _ —a/g—n Pr@E—pv (x(1—gt)77)
= (") M, ywo=0-a e
@l % 1, (4.2)

‘This, in a way, generalizes (4.1). Indeed, it reduces to (4.1) when n=0.

Next, since

(a—ng) —a+k pu(x) t" ” a—k—ng —pu(x)
Zt M . (x,9)=x ?§0 m Tk.q (x e 1,

by virtue of (2.11), we have

T

Zg £ M(-‘I nq)(x = (1+ qt)_' by (£) — Py [x(l—l—qt)"""'] * (4. 3)
=

Multiplying (4.3) by 7 e ) ang operating on both sides with T";' ;s W€

obtain

— —k _—pu — a—4 —k _pv [x(L4gt)" ]
T:q ﬂ§0t” P (x)MS: ”q)(x,q)z(l—l—qt) q ’_F;fq[ac":IE e’ (#(1-+ah) ]
so that with the help of (3.12),

(VT (1, )= (1+g) ¢ ¢ OTH LTS O 2
- #=0 (1+qt)

—1/q» q:l N
(4. 4)

It is interesting to remark that wheres the formula (4.1) yields
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m-.O m!

a comparison of (4.1) and (4.3)would yield the recursion formula

MOz, ~) =M (2, ) +q M RN C X)) (4.6)

Note also that, Tju iy [xa“k e P (%) ] can be expressed as

I

m o (B)
e MU(H —'??2) (x: ‘?D! (4' 5>

[T:;l{x ke—ﬂu (I)}] — ' xa' R+ ng _p“(x) M(‘I)

b o (x,q), and hence

n M, ) (% @) =(xD—2xp/(x)ta—q+ng) Mu(n (% q) (4.7)
a formula. which can be derived from (3.4) as well. On the other hand, writing

T, q[:cae—p”(x)] =T, , % 27" g™ 2™ and assuming u'_;"xa_m-1 e D y=y"

and making an appeal to (2.6), we get
- k i — —m—1 _—pu
al AT OMG  0=a S AT )

This, finally, simplifies to

mik ) e 4.8
303, ( . )M(,,S)(x,q)- (4.8)

In the particular case when k=0, m=¢g=1, it will lead to
M (z, D=3 MV (5, 1), (4.9)
5=

which further reduces to a similar formula for Laguerre polynomials [5, p192] when
a=a+1 and p (x)=x.

0. Polynomials related to the M f:) (x,q)

In this section, following Carlitz [2,3], we consider a set of polynomials
AE':) (x,q) such that

n ,
> AY@o MG P =0n=1 ad AP x D=1, G.1)
A

Obviously, the polynomials AE:) (x,q) are uniquely determined by (5.1). It fol-

lows as a consequence of our definition that

—-‘;t Z A ) M (2,9)

=3 "4, (5, ) 5 " M ()
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o0 (&'+ﬂ3(]) — A _
= ZD £ Aifn)(x, q)(1—qt) PP x(1—g) ™ 7]

Ht —

and hence

= a ,=b®+b, [x(1+gz) """
s 2" A ) =(1+q2) T ? #(1+qz) ] (5. 2)

m=0 il

where t=2z{(1—qi).
Thus comparison of (4.1) and (5.2) would lead to

 —
Ai‘;f(x q)=M" 0 (x, —q) .

— Lk

This indicates that the associated polynomuials AS:) (x,q) have properties similar to

those of M'%(z, ¢).

Of particular interest are the Rodrigue’s formula

) 1 k+ng -~ pu —— v
Afj (x, 40=“‘n!— X TRFRE = p(2) T:jq[x A=k gb (x)] (5.4)
which follows from (8.8), and the summation formula
() O (ax+8) (8)
MUJ? (x: q) _mgi') MZU(H—-#I) (x:Q’) Aum (x: Q) ‘ (5' 5)]

or equivalently,

M fj) (x,9)=2"M (zi?ﬁm) (.9 M _(_:f,) (%, —q) (5.6)

which follows from (4. 1).
While concluding we remark that most of our results will correspond to those

of Mittal [7] if we set ¢=1 and to those of Al-Salam [1] if we set 2=1, ¢=1,
p,(x)=x. |

C.M. Joshi M. L. Prajapat
University of jodhpur Defence Laboratory

Jodhpur (RAJ.), India  Jodhpur, India
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