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E-COMPACT CONVERGENCE SPACES AND E-FILTERS

By S.S5. Hong and L.D. Nel

Engelking and Mrowka have introduced the concept of E-compact spaces for a
topological space E(see [2], [9], [10]), i.e. spaces which are homeomorphic to
closed subspaces of powers of E. Moreover, for a Hausdorff space E, the full
subcategory of E-compact spaces is the epi-reflective hull of E in the -category
Haus of Hausdorff spaces and continuous maps. |

In this paper we study E-compact convergence spaces. The natural setting for
this is the category HCon of Hausdorff convergence spaces and continuous maps.
First we identify the epimorphisms of HCon (they are not just the dense maps

as one might expect at first glance) and the extremal monomorphisms and
observe that HCon is an (epl, extremal mono) category. Thus, In categorical

fashion, several known properties of E-compact topological spaces can be extended
at once to convergence spaces e.g. results about epi-reflectiveness.
We introduce the concept of E-filter and use it to give a characterization of

E-compact convergence spaces which is new also for the topological case.
Moreover, in the topological case E-filters can be used to construct the E-com-

pactifications.

When E is a regular Hausdorff topological space the E-extendability of a dense
morphism in Haus is characterized in terms of E-filters.

All concepts of convergence spaces will be used 1n the sense of Kent and,
Richardson [8)], i.e. X is a convergence space if a relation x & lim # is defined
on X X (the set of filters on X) such that

| (1) x&lim £ where x is the ultrafilter generated by {x}.

(2) x €lim &% and F C & implies xE1lim &

(3) xE€1lim #F implies x € lim % N x.

A convergence space is Hausdorff when lim.% contains at most one point. For

categorical background we refer to Herrlich and Strecker [6].
1. Some Properties of HCon

It is well known that the category HCon is complete and well-powered and that
every such category Is an (epi, extremal mono) category (see Theorem 34.5 of
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(6] ).

DEFINITION 1.1. A map f:X—Y in HCon will be called {-dexnse when there is
no proper closed subset of ¥ containing f(X).

By similar arguments to those in Chapter 15 of [5], we have the following:

PROPOSITION 1.2. I»n HCon

{closed embeddings} = {regular monomorphisms} = {extremal wmonomorphisms} and
{t-dense maps} = {epimorphisms}.

DEFINITION 1.3. Let E be a Hausdorff convergence' space. A convergence space
is said to be E-compact if it is isomorphic to a closed subspace of a power of E.

For any E &€ HCon, every epi-reflective subcategory of HCon contains all E-
compact spaces whenever it contains £, for HCon is complete. The f{ollowing
result generalizes the known corresponding fact for Hausdorfi topological spaces.

THEOREM 1.4. For any E & Hcon, the full subcategory of E-compact spaces is
epi-reflective in the category HCon.

PROOF. Let G: HCon(Z)—HCen be the embedding functor of the full subcategory
of E-compact spaces. A routine verification shows that G preserves limits. Thus
by the special adjoint functor theorem (28.11, [6]) G has a left adjoint L e.
HCon(E) is reflective. On forming the (epi, extremal mono)*factofization of the
reflection map of each object of HCon, it becomes clear that HCon(E) Is epi-
reflective in HCon.

REMARK. Herrlich has generalized the concept of E-compact spaces to that of
& -compact spaces for a class & of Hausdorff topological spaces. He has shown
that the full subcategory of &-compact spaces is the epireflective hull of & in the
category Haus ([4]). The corresponding conclusion cannot be made for HCon
since this category is not co-(well-powered) (see [11]).

2. E-compactness and F-filters

Throughout this section X and £ will be Hausdorff convergence spaces and

C(X, E) will denote the set of continuous maps on X into E. I will denote the
closed unit interval of the real line .

It 1s known [1] that a completely regular space X 1s compact (=7-compact) 1if
every maximal completely regular filter on X is convergent and that every
maximal completely regular filter has a convergent image under any f in C(X, I).
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DEFINITION 2.1. A filter # on X is an E-fillter if f(%# ) is convergent for
any f in C(X, E).

Obviously convergent filters are E-filters and for a compact Hausdorff
space F, all ultrafilters are E-filters.

LEMMA 2.2. Suppose C(X, E) separates the points of X and every E-filter on X
is convergent. Then X has the initial convergence structure determined by C(X, E).

PROOF. Let g be a map on a convergence space Y into X such that fg Is
continuous for all f € C(X, E). Let # be a filter on X which converges to x.
Then for any fFE€CX,E), fg(%# ) converges to fg(x). Hence g(%# ) is an
E-filter and is convergent by the assumption. Since C(X, E) separates the points of
X, g(# ) converges to g(x). Thus g is continuous as required. |

THEOREM 2.3. X is E-compact iff C(X,E) separales the points of X and every-
E-filter on X is convergent.

PROOF. Let o be the class of convergence spaces which satisfy the conditions:
in the theorem. We claim that ¢z is productive and closed hereditary. To see
this, let F be a closed subspace of a member X of oz. Clearly C(F, E) separates.
the points of F. Let # be an E-filter on F. Since a continuous image of an
E-filter is again an E-filter, the filter F generated by # on X is an E-filter.
Let x be the limit of #. Since F is closed, z belongs to F and hence # is:
convergent.

Let (X z.)?'. c1 be a family in o and (T1X,p,) its product. Obviously C(l'[Xz., E)
separates the points of [1X,;. Let S be an E-filter on [1X.. For each /&1,
p;,(#) is a convergent E-filter on X,. Hence # is convergent. Since E belongs:
to ¢¢, every E-compact space belongs to ¢r.

Conversely, let X be a member of ¢z and e¢: X —E“XE) the parametric map
Into the product space E“XE) gince XX E) hag the initial structure determined
by the projection maps p, (f € C(X, E)) the above lemma leads to the conclusion

that X has the initial structure determined by ¢ i.e. ¢ is an embedding. To show
that e is a closed embedding, let z be in the closure of ¢(X). Then there is a

filter % on E““*'® such that F converges to z and e(X) &€ % . Hence ehl(ﬁ' )
is a filter base on X. For each fEeC(X, E), f(e_l(.ﬁ')):pfe(e—l(ﬁ'))

contains pf(ﬁ" ) so that f(e_l(ﬁ' )) converges to pf(z). Hence 3_1(.;3' ) is an
E-filter and eﬁl(ﬁ ) 1s convergent, say to x & X. Since pfe(x) =p frz(]im 3_1(.5' ))
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=lim pfe(e_l(ﬁ')) =pf(z), e(x)=2z belongs to e(X) as required.

3. E-compact topological spaces

Henceforth E will be a Hausdorff topological space. In this special case the
preceding results can be somewhat extended and related to known special results.

LEMMA 3.1 Let E be a Hausdorff topological space. A filler F on a coizvergence
space X i1s an E-filler iff # contains an open E-filier.

PROOF. Given the E-filter #, put xleim f(&#F) (fe (X, E)) and note that
the open neighborhood filter O(xf) is contained in f(%# ). Let & be the filter

generated by the join of the open. filter bases f_IO(xf). Then & 1s é.n open E-
filter contained in #.

[-filters and R-filters can be characterized in terms of completely regular filters
F on a convergence space X (i.e. % which have an open base % such that
for each B& & there exists C&€ F and f&C(X,I) such that CC B, f is 0 on

C and 1 on X~ B).

PROPOSITION 3.2. Let # be a filter on a convergence space X. Then
(1) & is an I-filter iff F contains a maximal completely regular filler.
(2) F is an R-filter iff # contains a maximal completely regular filter with

the couniable intersection property.

PROOF. (1) The open I-filter < constructed in the proof of 3.1 is a completely
regular filter contained in S . Moreover & is a maximal such filter. Indeed,
suppose there is a completely regular filter & which contains & properly. Let G

be an open set belonging to &"— . Then there is an open set FEZ” with FCG
and a continuous map f: X—7 with f(F)=0 and f(X—-G)=1. It is obvious that
f(&’) converges to 0. Since every member of & meets f—'l( (z,1}) for each 2z<1
and f(¥&) is convergent, f(¥&) converges to 1. Hence f(&”) also converges to 1,
which is a contradiction. For the converse, it is easy to show that every maximal
completely regular filter is an /-filter (also see (1] ) and hence a filter containing
such a filter is again an [-filter.

(2) Using the fact that every filter on R with the countable intersection
property has a cluster point, one can easily show that every maximal completely
regular filter with the countable intersection property is an R-filter.

Conversely, let # be an R-filter on a space X. Let ¢c:X—cX be the complete
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regularization of X. Then c¢ is onto. Since ¢(# ) is again an R-filter on cX, 1t
is a Cauchy filter on-the uniform space ¢X with the initial uniform structure
determined by C(cX,R). Hence ¢(%# ) contains a maximal completely regular
filter & with the countable intersection property because the minimal Cauchy
filters on the space cX are exactly maximal completely regular filters with the

countable intersection property ([7]). It is easy to show that cﬂl(%") is a maximal
completely regular filter with the countable intersection property and # contains

c_l(g).

In the special case E=7 2.3 and 3.2 give the following strengthening of the

known characterization of compactness in terms of completely regular filters (see
[1]). A convergence space X is compact Hausdorff topological iff C(X, 1)
separates points and every maximal completely regular filter on X is convergent.
Obviously a similar characterization of realcompact X can be concluded from 2.3

and 3.2.

DEFINITION 3.3. lLet # be an E-filter on a convergence space X. We define a
map [(#F]: C(X,E)—E by [F1(f)=limf(# ). Then [F#] will be called an
E-filter map on X.

Let #X be the set of all E-filter maps on X and 7:X—7X the map defined by
r(x)=[x]. |

For any f&C(X, E), there is a map St y X —F defined by sf( (%7 ] )=1lim F(.# ).

The convergence space with the initial convergence structure on X determined
by (Sf)fEC(X, E) will be denoted again by 7X. Since sfr(x)zsf( (2] )=Iim f(x)=f(x)
for each xr& X, we have sr=r for each fE (C(X,E). Hence r is continuous.

Considering the map e:7X SEYEE) defined by e([#F])=0im Ff(%F )) fEC(X.EY
one can easily prove that e is a closed embedding and that r:X—rX is precisely
the Haus(E)-reflection of X, where Haus(E) denotes the full subcategory of
Haus determined by all E-compact spaces.

REMARK. For a Hausdorff convergence space E, one might consider the space
rX ot E-filter maps. However, 7»X is isomorphic to the closure of ¢(X), where
c: X—ECEE denotes the parametric map defined by pe=sf for each f & C(X, E)
and projection p, Since the closure of a subset in a convergence space need not
be closed, »X need not be E-compact.

DEFINITION 3.4. A map f:X—-Y is said to be E-extendable if for any h &
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C(X,E) there is a map g& C(Y, E) with gf=nh.

It is known [10] that an E-regular space X, i.e. a space which is homeomorphic:

with a subspace of a power of £, is E-compact iff X has no proper denss E-

extendable extension. Such extensions can also be characterized 1in terms of
E-filters.

THEOREM 3.5. Let E be a regular Hausdorff spazce and let e:X—Y be a
conlinuous map between topological spaces. Then the following ere equivalent:

(a) e is dense and E-extendable

(b) for any open E-filter & on Y, e—l(f) 1S an open E-filter base on X

(c) for any E-filter &Z onY, the non-emply members of e_l( Z) form an E-filter
base on X. |

PROOF. In view of 3.1 it is enough to show the equivalence of (a) and (b).
Suppose ¢ is dense and E-extendable. For any open E-filter ¥ on Y, e_l(ﬁ' ) is
a filter base. For any fE€C(X, E), there is a map f&eC(Y,E) with fe=f. Since
f(e_l(ﬁ')) contains f(.%F ), f(e"l(ﬁ")) 1S convergent.

Conversely, for any y €Y, the open neighborhood filter O(y) of y is an open
E-filter. Hence 3—1(0( y)) is again an open E-filter so that e is dense. For any
feC(X,E) and y €Y, define f(y)zlimf(e_l(O(y))). Since fe(x)=lim f(e !
(0(e(x))))=1im f(O(x))=f(x), we have fe=f. For any y €Y, let U be a closed
neighborhood of f(y) in E. Then there is an open neighborhood V of y with
f(e_l(V))CU. Since for any z &V, f(z)=Ilim ({f(e_l(VﬂW))lWEO(z)}),
f(2) e f(e"l(V))CU , 1.e. F(V)CU. Hence f is continuous.

COROLLARY 3.6. A dense continuous map f: X—Y is I[-extendable (resp.

R-extendable) iff the inverse image of every maximal completely regular filter
(with the countable intersection property) under f is again such a filter on X.
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