TOPOLOGY OF FRAMED MANIFOLDS

By Yong Bai Baik

0. Introduction

D.E. Blair [1], S.I. Goldberg and K. Yano [4] have studied the framed manifolds with f-structure. This is a generlization of almost complex manifold and almost contact manifold. In a framed manifold, we take an interest in S-structure the analogue of Kaehler structure in almost complex manifolds and of the Sasakian structure in almost contact manifolds.
In this paper we shall discuss harmonic 1-forms in compact framed S-manifold and obtain some analogous results to compact Kaehlerian manifold and compact Sasakian manifold. The main theorems of the paper are Theorems 3.3, 4.3, 5.1 and 6.5. In $\S 1$ we give definitions of framed manifolds. In $\S 2$ for later use we give preliminary formulas on framed S-manifold and framed C-manifold. In § 3 we discuss harmonic 1 -form and we shall prove Theorem 3.3. In $\S 4$ we have used $2 n$-homothetic deformations to get the results on first Betti number and we shall prove Theorem 4.3. In $\S 5$ we discuss the relations of harmonic 1 -forms and the sectional curvatures and prove Theorem 5.1. In $\S 6$ we consider an f-holomophic pinching to get the results on first Betti number and we prove Theorem 6.5.

1. Framed manifolds

Let M be a $(2 n+s)$-dimensional differentiable manifolds with an f-structure of rank $2 n$. If there exist on M vector fields ξ_{α} and 1 -forms η_{α} such that

$$
\begin{equation*}
f^{2}=-I+\Sigma \xi_{\alpha} \otimes \eta_{\alpha^{\prime}} \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
\eta_{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}, \tag{1.2}\\
f \xi_{\alpha}=0, \quad \eta_{\alpha} \circ f=0, \tag{1.3}
\end{gather*}
$$

where the indices α, β run over the range $\{1,2, \cdots, s\}$ and repeated index α is to be summed from 1 to s, then we call the structure a framed structure and the manifold M is called a globally framed f-manifold or a framed manifold ([1], [3], [4]).
The framed manifold M is called a framed metric manifold if there exists on M a Riemannian metric g such that

$$
\begin{equation*}
g(f X, f Y)=g(X, Y)-\sum \eta_{\alpha}(X) \eta_{\alpha}(Y), \tag{1.4}
\end{equation*}
$$

for vector fields X and Y on M, where we put $\eta_{\alpha}(X)=g\left(\xi_{\alpha}, X\right)$.
If the tensor field S of type $(1,2)$ defined by

$$
S(f)=[f, f]+\Sigma \xi_{\alpha} \otimes d \eta_{\alpha}
$$

vanishes identically, the framed structure is said to be normal and the manifold M is called a normal framed manifold.
Further a framed metric structure which is normal and has closed fundamental 2 -form F, that is,
(1.5) $\quad d F=0, \quad F(X, Y)=g(X, f Y)$,
will be called a framed K-structure and M a framed K-manifold. It should be noted that a framed K-manifold is orientable since

$$
\eta_{1} \wedge \eta_{2} \wedge \cdots \wedge \eta_{s} \wedge F^{n} \neq 0
$$

There are special two types of framed K-manifold [1]:

1) If there exists global linearly independent 1 -forms $\eta_{1}, \cdots, \eta_{s}$ such that $d \eta_{1}=\cdots$ $=d \eta_{s}=2 F$, then we call the structure a framed S-structure and the manifold M a framed S-manifold. As example, there is Sasakian structure for $s=1$.
2) If there exists global 1 -forms $\eta_{1}, \cdots, \eta_{s}$ on a framed K-manifold M such that $d \eta_{1}=\cdots=d \eta_{s}=0$, then we call the structure a framed C-structure and M a framed C-manifold. As example, there is cosymplectic structure for $s=1$.

2. Identities in framed S-manifold

In this section, we prepare identities in a $(2 n+s)$-dimensional framed S-manifold for later use.

We denote by L the operator of Lie derivative, then the following properties are well-known [1], [3].

$$
\begin{gather*}
L\left(\xi_{\alpha}\right) g=0, \tag{2.1}\\
L\left(\xi_{\alpha}\right) f=0, \quad L\left(\xi_{\alpha}\right) F=0 \tag{2.2}
\end{gather*}
$$

From (2.1) we see that the vector fields ξ_{1}, \cdots, ξ_{s} are Killing.
Denoting covariant differentiation by ∇ in a framed K-manifold we get $\left(d \eta_{\alpha}\right)_{j i}=\nabla_{j} \eta_{\alpha i}$. Thus, on a framed S-manifold we have

$$
\begin{equation*}
\nabla_{j} \eta_{\alpha i}=f_{j i} \tag{2.3}
\end{equation*}
$$

and in the case of a framed C-manifold

$$
\begin{equation*}
\nabla_{j} \eta_{x i}=0 \tag{2.4}
\end{equation*}
$$

Differentiating covariantly $f_{j i}$ on a framed S-manifold, by a longthy computation we have [1]

$$
\begin{equation*}
\nabla_{k} f_{j i}=\Sigma_{\alpha}\left(\eta_{\alpha j} g_{i k}-\eta_{\alpha i} g_{j k}\right)-\Sigma_{\alpha, \beta} \eta_{\xi k}\left(\eta_{\alpha j} \eta_{\beta i}-\eta_{\alpha i} \eta_{\beta j}\right), \tag{2.5}
\end{equation*}
$$

From (2.5) we have

$$
\begin{equation*}
\nabla^{\alpha} f_{\alpha i}=2 n \Sigma_{\alpha} \eta_{\alpha i}, \quad \nabla^{a} \nabla_{a} f_{j i}=-2 s f_{j i} \tag{2.6}
\end{equation*}
$$

in the case of a framed C-manifold

$$
\begin{equation*}
\nabla_{k} f_{j i}=0 \tag{2.7}
\end{equation*}
$$

Next, applying the Ricci's identity to $\eta_{\alpha i}$, we get

$$
\nabla_{k} \nabla_{j} \eta_{\alpha i}-\nabla_{j} \nabla_{k} \eta_{\alpha i}=-R_{h j i}{ }^{t} \eta_{\alpha t} .
$$

Substituting (2.3) and (2.5) into the last equation, we have

$$
\begin{equation*}
R_{k j i}{ }^{t} \eta_{\alpha t}=\Sigma_{\alpha}\left(\eta_{\alpha k} g_{j i}-\eta_{\alpha j} g_{i k}\right)-\Sigma_{\alpha, \beta} \eta_{\beta i}\left(\eta_{\alpha j} \eta_{\beta k}-\eta_{\alpha k} \eta_{\beta j}\right) . \tag{2.8}
\end{equation*}
$$

Transvecting $g^{j i}$ to (2.8) we have

$$
\begin{equation*}
R_{k}^{t} \eta_{\alpha t}=2 n \Sigma_{\alpha} \eta_{\alpha k} \tag{2.9}
\end{equation*}
$$

Similarly, applying the Ricci's identity to f_{i}^{h}, we get

$$
\nabla_{k} \nabla_{j} f_{i}^{h}-\nabla_{j} \nabla_{k} f_{i}^{h}=R_{k j t}{ }^{h} f_{i}^{t}-R_{k j i}^{t} f_{t}^{h}
$$

Substituting (2.5) into the last equation, we have

$$
\begin{aligned}
R_{t h k j} f_{i}^{h}= & -R_{k j i t} f_{h}^{t}+s\left(f_{k i} g_{j h}+f_{j h} g_{k i}-f_{k h} g_{j i}-f_{j i} g_{k h}\right) \\
& +2 \Sigma_{\alpha, \beta} f_{k j}\left(\eta_{\alpha h} \eta_{\beta i}-\eta_{\alpha i} \eta_{\beta h}\right) \\
& -s \Sigma_{\beta}\left(f_{k i} \eta_{\beta j} \eta_{\beta h}-f_{k h} \eta_{\beta j} \eta_{\beta i}-f_{j i} \eta_{\beta k} \eta_{\beta h}+f_{j h} \eta_{\beta i} \eta_{\beta k}\right) \\
& -\Sigma_{\alpha, \beta}\left(f_{k h} \eta_{\alpha i} \eta_{\beta j}-f_{j h} \eta_{\alpha i} \eta_{\beta k}-f_{k i} \eta_{\alpha h} \eta_{\beta i}+f_{j i} \eta_{\alpha h} \eta_{\beta k}\right)
\end{aligned}
$$

Transvecting $g^{p h}$ to the last equation we have

$$
\begin{equation*}
\frac{1}{2} R_{s t j i} i^{s t}=R_{t j} f_{i}^{t}+(2 n-1) s f_{j i} \tag{2.10}
\end{equation*}
$$

Since $R_{s t j i}$ and $f_{j i}$ are skew-symmetric with respect to j and i in (2.10), we have

$$
\begin{equation*}
R_{j t} f_{i}^{t}=-R_{i t} f_{j}^{t} \tag{2.11}
\end{equation*}
$$

From (2.i0) we have

$$
\begin{equation*}
f^{s t} \nabla_{s} \nabla_{t} u_{j}=-\left\{R_{j t} f_{i}^{t}+(2 n-1) s f_{j i}\right\} u^{i}, \tag{2.12}
\end{equation*}
$$

for any vector u_{j}.

3. Harmonic 1-forms in a compact framed S-manifold

In this section, we consider 1 -form and first Betti number in a compact framed .S-manifold.

First we prove
LEMMA 3.1. In a compact framed S-manifold, a harmonic 1-form w is orthogonal to ξ_{α}, that is, $\xi_{\alpha}^{i} w_{i}=0$.
PROOF. Since the vector fields ξ_{α} are Killing, we have $d C_{\alpha}=0$ for the scalars: C_{α} defined by $C_{\alpha}=\xi_{\alpha}^{i} w_{i}$ for each α, Hence C_{α} are constant. If we define u by

$$
\begin{equation*}
w=\Sigma C_{\alpha} \eta_{\alpha}+u, \tag{3.1}
\end{equation*}
$$

then u is a 1 -form orthogonal to ξ_{α}. Operating Δ to the last equation we get $\Delta u=-\Sigma C_{\alpha} \Delta \eta_{\alpha}$ and as η_{α} are Killing we have

$$
(\Delta u)_{i}=-\Sigma C_{\alpha}\left(\Delta \eta_{\alpha}\right)_{i}=2 \Sigma C_{\alpha} R_{i}^{t} \eta_{\alpha t}=4 n \Sigma C_{\alpha} \eta_{\alpha i},
$$

by virtue of (2.1) and (2.9). Hence u is a harmonic 1 -form because of $(\Delta u, u)=0$. Thus we have $C_{\alpha}=0$ and obtain the lemma.

LEMMA 3.2. In a compact framed S-manifold, $\tilde{w}=f w$ is a harmonic 1 -form for any harmonic 1-form w.

PROOF. Taking account of lemma 3.1 and (2.6) we get

$$
\begin{aligned}
(\Delta \tilde{w})_{j} & =\nabla^{a} \nabla_{a}\left(f_{j}^{i} w_{i}\right)-R_{j}^{a}\left(f_{a}^{i} w_{i}\right) \\
& =\left(\nabla^{a} \Delta_{a} f_{j}^{i}\right) w_{i}+2\left(\nabla_{a} f_{j}^{i}\right)\left(\nabla^{a} w_{i}\right)+f_{j}^{i} \nabla^{a} \nabla_{a} w_{i}-f_{j}^{a} R_{a}^{i} w_{i},
\end{aligned}
$$

the first two terms of the right member is transformed to

$$
-2 s f_{j}^{i} w_{i}+2 s f_{j}^{i} w_{i}+2 s \Sigma \eta_{\alpha j} \xi_{\beta}^{\alpha} f_{a}^{i} w_{i}+2 s \Sigma \eta_{\alpha j} \xi^{\xi}{ }^{a} f_{a}^{i} w_{i}=0,
$$

by birture of (1.2) and (2.6). Thus we have

$$
(\Delta \tilde{w})_{j}=f_{j}^{i}\left(\nabla^{a} \nabla_{a} w_{i}-R_{i}^{a} w_{a}\right)=0 .
$$

From lemmas 3.1 and 3.2 we have
THEOREM 3.3. The first Betti number of a compact framed S-manifold is zero and even.

Next, we define an f-analytic form as a 1-form u satisfying

$$
\begin{equation*}
f d u-d f u=0, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
i\left(\xi_{\alpha}\right) u=0 \quad \text { for all } \xi_{\alpha} \tag{3.3}
\end{equation*}
$$

Then the equation (3.2) is written explicitly as follows

$$
\begin{equation*}
f_{j}^{a}\left(\nabla_{a} u_{i}-\nabla_{i} u_{a}\right)-\nabla_{j}\left(f_{i}^{a} u_{a}\right)-\nabla_{i}\left(f_{j}^{a} u_{a}\right)=0 \tag{3.4}
\end{equation*}
$$

Taking account of (3.3) and (2.5), the last equation is written by

$$
\begin{equation*}
f_{j}^{a} \nabla_{a} u_{i}-f_{i}^{a} \nabla_{j} u_{a}+\Sigma_{\alpha} \eta_{\alpha j} u_{i}-\Sigma_{\alpha} \eta_{\alpha i} u_{j}=0 . \tag{3.5}
\end{equation*}
$$

Transvecting (3.5) with $g^{j i}$ we obtain

$$
\begin{equation*}
f^{j i} \nabla_{j} u_{i}=0 . \tag{3.6}
\end{equation*}
$$

Then we prove
THEOREM 3.4. A necessary and sufficient condition for a 1-form u in a compact framed S-manifold to be harmonic is that it is f-analytic.

PROOF. For a harmonic 1 -form u, we have $d u=0$ and $i\left(\xi_{\alpha}\right)=0$ by virtue of lemma 3.1. Then $f u$ is also a harmonic and we have $d f u=0$. Hence u is an f-analytic.

Conversely, let u be an f-analytic, then we have $i\left(\xi_{\alpha}\right) u=\xi_{\alpha}{ }^{i} u_{i}=0$. Differenting the above and making use of (2.4) we get

$$
f_{j}^{i} u_{i}+\left(\nabla_{j} u_{i}\right) \xi_{\alpha}^{i}=0 .
$$

Again diffirentiating the last equation and using of (3.6) we have

$$
\begin{equation*}
\xi_{\alpha}^{i} \nabla^{j} \nabla_{j} u_{i}=0 \tag{3.7}
\end{equation*}
$$

Next, transvecting (3.5) with f_{k}^{i} we have

$$
f_{j}^{a} f_{k}^{i} \nabla_{a} u_{i}+\nabla_{j} u_{k}-\Sigma \eta_{\alpha k} \xi_{\alpha}^{a} \nabla_{j} u_{a}+f_{k}^{i} \Sigma \xi_{a j} u_{i}=0
$$

Operating $\nabla^{j}=g^{j i} \nabla_{i}$ to the last equation we get $\Delta u=0$, by virtue of (3.7) and (2.5). Thus u is harmonic.

4. Harmonic 1-forms and Ricci curvature tensors

In this section, we use $2 n$-homothetic deformations to get results on the first Betti numbers. First we put D by the equations $\eta_{\alpha}=0$ for all α, then D is a $2 n$-dimensional distribution. We define a $2 n$-homothetic deformation, or simply a D-homothetic deformation $g_{j i} \rightarrow^{*} g_{j i}$ is given by

$$
\begin{equation*}
{ }^{*} g_{j i}=a g_{j i}+b \Sigma \eta_{\alpha j} \eta_{\alpha i}, \tag{4.1}
\end{equation*}
$$

for the constants a and b satisfying $a>0$ and $a+b>0$, The inverse matrix
$\left({ }^{*} g^{j k}\right)$ of $\left({ }^{*} g_{j k}\right)$ is given by

$$
\begin{equation*}
{ }^{*} g^{j k}=a^{-1} g^{j k}-a^{-1} b(a+b)^{-1} \Sigma \xi_{\alpha}^{j} \xi_{\alpha}^{k}, \tag{4.2}
\end{equation*}
$$

If we put

$$
W_{j k}^{i}={ }^{*} \Gamma_{j k}^{i}-\Gamma_{j k}^{i},
$$

we have in a framed S-manifold

$$
\begin{equation*}
W_{j k}^{i}=-a^{-1} b \Sigma_{\alpha}\left(f_{j}^{i} \eta_{\alpha k}+f_{k}^{i} \eta_{\alpha j}\right) . \tag{4.3}
\end{equation*}
$$

Substituting (4.3) in to the

$$
* R_{j k h}^{i}=R_{j k h}^{i}+\nabla_{l} W_{j k}^{h}-\nabla_{j} W_{i k}^{h}+W_{a \imath}^{h} W_{j k}^{a}-W_{a j}^{h} W_{i k}^{a},
$$

we have

$$
\begin{align*}
* R_{i j k}^{h} & =R_{i j k}^{h}+a^{-1} b s\left(2 f_{k}^{h} f_{i j}+f_{j}^{h} f_{i k}-f_{i}^{h} f_{j k}\right) \tag{4.4}\\
& +a^{-1} b \Sigma\left(\eta_{\alpha k} \nabla_{i} f_{j}^{h}+\eta_{\alpha j} \nabla_{i} f_{k}^{h}-\eta_{\alpha k} \nabla_{j} f_{i}^{h}-\eta_{\alpha i} \nabla_{j} f_{k}^{h}\right) \\
& +a^{-2} b^{2}\left(\delta_{i}^{h} \Sigma \eta_{\alpha j}-\delta_{j}^{h} \Sigma \eta_{\alpha i}\right) \Sigma \eta_{\alpha k} \\
& +a^{-2} b^{2}\left(\Sigma \xi_{\alpha}^{h}\left(\eta_{\alpha j} \Sigma \eta_{\beta i}-\eta_{\alpha i} \Sigma \eta_{\beta j}\right) \Sigma \eta_{r k}\right.
\end{align*}
$$

Contracting with respect to i and i we get

$$
\begin{equation*}
{ }^{*} R_{j k}=R_{j k}-2 a^{-1} b s g_{j k}+2 a^{-1} b(2 n+s) \Sigma \eta_{\alpha j} \eta_{\alpha k}+2 n a^{-2} b^{2} \Sigma \eta_{\alpha j} \Sigma \eta_{\beta k} \tag{4.5}
\end{equation*}
$$

where we have used (2.6). Contracting the last equation with (4.2), we have

$$
\begin{equation*}
{ }^{*} R=a^{-1} R-2 n s a^{-2} b, \tag{4.6}
\end{equation*}
$$

where R is the scalar curvature.
LEMMA 4.1. For a framed manifold M with structure tensors $\left(f, g, \xi_{\alpha}, \eta_{\alpha}\right)$, we put

$$
\begin{equation*}
{ }^{*} f=f, \quad * \xi_{\alpha}=a \xi_{\alpha}, * \eta_{\alpha}=a^{-1} \eta_{\alpha}, * g=a g+\left(a^{2}-a\right) \Sigma \eta_{\alpha} \otimes \eta_{\alpha} \tag{4.7}
\end{equation*}
$$

for positive constant a. If ($f, g, \xi_{\alpha}, \eta_{\alpha}$) is a framed S-structure (C-structure, resp.), then $\left({ }^{*} f,{ }^{*} g,{ }^{*} \xi_{\alpha},{ }^{*} \eta_{\alpha}\right)$ is also a framed S-structure (C-structure resp.)

PROOF. By the definition it is easy to see that (${ }^{*} f,{ }^{*} g,{ }^{*} \xi_{\alpha},{ }^{*} \eta_{\alpha}$) is a framed metric structure. We compute

$$
\begin{aligned}
{ }^{*} d^{*} \eta_{\alpha}(X, Y) * \xi_{\alpha} & ={ }^{*} d \eta_{\alpha}(X, Y) \xi_{\alpha}=\left({ }^{*} \nabla_{X} \eta_{\alpha}\right)(Y)-\left(* \nabla Y \eta_{\alpha}\right)(X) \\
& =\left(\nabla_{X} \eta_{\alpha}\right)(Y)-\left(\nabla_{Y} \eta_{\alpha}\right)(X)-d \eta_{\alpha}(X, Y) \xi_{\alpha}
\end{aligned}
$$

from which and ${ }^{*} f=f$, we have

$$
\left[{ }^{*} f,{ }^{*} f\right]+\Sigma{ }^{*} d^{*} \eta_{\alpha}(X, Y)^{*} \hat{\xi}_{\alpha}=0 .
$$

From $F^{*}(X, Y)=a F(X, Y)$ we get ${ }^{*} d^{*} F=a d F=0$. Thus the structure $\left(f^{*},{ }^{*} g\right.$, $\xi_{\alpha},{ }^{*} \eta_{\alpha}$) is a framed K-structure.

Furthermore we have

$$
{ }^{*} d^{*} \eta_{\alpha}(X, Y)=a d \eta_{\alpha}(X, Y)=2^{*} F(X, Y),
$$

this shows that $\left({ }^{*} f,{ }^{*} g,{ }^{*} \xi_{\alpha},{ }^{*} \eta_{\alpha}\right.$) is a framed S-structure.
Lemma 4.2. A harmonic 1-form w with respect to g on a framed S-manifold M is also a harmonic 1-form with respect to ${ }^{*} g$.

PROOF. Since $d w=0$ and $\delta w=0$, we prove $* d w=0$ and $* \delta w=0$. By the definitions of ${ }^{*} d$ and ${ }^{*} \delta$ we get

$$
\begin{aligned}
\left({ }^{*} d w\right)_{j i} & ={ }^{*} \nabla_{j} w_{i}-* \nabla_{i} w_{j} \\
& =\left(\nabla_{j} w_{i}-W_{i j}^{a} w^{a}\right)-\left(\nabla_{i} w_{j}-W_{j i}^{a} w_{a}\right) .
\end{aligned}
$$

Since $W^{a}{ }_{i j}$ is symmetric with respect to i and j, we have $* d w=0$.

$$
\begin{aligned}
* \delta w & ={ }^{*} g^{i j}\left(\nabla_{j} w_{i}\right) \\
& =\left(a^{-1} g^{i j}-a^{-1} b(a+b)^{-1} \xi_{\alpha}^{i} \xi_{\alpha}^{j}\right)\left(\nabla_{j} w_{i}-W_{j i}^{a} w_{a}\right) \\
& =a^{-1} \delta w .
\end{aligned}
$$

Hence we have * $\delta w=0$.
THEOREM 4.3. On a compact framed S-manifold M, there exists no harmonic 1-form w which satisfies

$$
\begin{equation*}
R_{1}(w, w)+2 \operatorname{sg}(w, w)>0 \tag{4.8}
\end{equation*}
$$

for any point of M and which has at least one point where inquality holds. Especially, if $R_{1}+2 s g$ is positive definite, then the first Beti number is zero, that is, $b_{1}(M)=0$.

PROOF. Assume that there exists a harmonic 1-form w satisfying (4.8). As M is compact $g(w, w)$ is bounded and there exists a positive number ε such that

$$
R_{1}(w, w)+2 \operatorname{sg}(w, w)>\varepsilon>0
$$

holds everywhere over M.
On the other hand., by lemma 3.1, (4.2) and (4.5) we have

$$
\begin{aligned}
* R_{j i}^{*} w^{j} w^{i} & =a^{-1} * R_{j i} w^{j} w^{i} \\
& =a^{-1}\left(R_{j i}-2 a^{-1} b s g_{j i}\right) w^{j} w^{i} .
\end{aligned}
$$

If we choose the constant a so small that

$$
2 a s g(w, w)<\varepsilon,
$$

then we have

$$
{ }^{*} R_{1}\left({ }^{*} w,{ }^{*} w\right)>0,
$$

the last inquality contradicts to the Theorem of Yano and Bochner [9] .

5. Harmonic 1-forms and curvature tensors

In a framed manifold M, we define an f-basis at a point of M as the set of orthogonal frame $\left\{e_{\lambda}, e_{\lambda^{*}}, e_{\alpha^{\prime}}\right\}\left(\lambda^{*}=n+\lambda, \alpha^{\prime}=2 n+\alpha\right)$ such tha

$$
\begin{equation*}
e_{\lambda^{*}}=f e_{\lambda^{\prime}}, \quad e_{\alpha^{\prime}}=\xi_{\alpha} \tag{5.1}
\end{equation*}
$$

Then the components of the metric tensor g and the fundamental 2-form F with respect to an f-basis are given by

$$
g=\left(\begin{array}{lll}
\delta_{\mu}^{\lambda} & 0 & 0 \tag{5.2}\\
0 & \delta_{\mu}^{\lambda} & 0 \\
0 & 0 & \delta_{\beta}^{\alpha}
\end{array}\right) \quad F=\left(\begin{array}{lcl}
0 & -\delta_{\mu}^{\lambda} & 0 \\
\delta_{\mu}^{\lambda} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

respectively. Then we have $f_{\lambda \lambda^{*}}=-1, f_{\lambda^{*} \lambda}=1$ and other components are all zero.
In a framed S-manifold, from (2.11), for an eigenvector X of $R_{1}, f X$ is also an eigenvector. Thus we have an f-basis for which only $R_{\lambda \lambda}, R_{\lambda^{*} \lambda^{*}}$ and $R_{\alpha \alpha \alpha}=2 n$ may be non-vanishing components of R_{1}. Hence the matrix ($R_{i j}$) is a diagonal.
By $K(X, Y)$ we mean the sectional curvature for the 2 -plane determined by X and Y, and we put

$$
\begin{array}{ll}
K_{\lambda \mu}=K\left(e_{\lambda^{\prime}}, e_{\mu}\right), & K_{\lambda \mu^{*}}=K\left(e_{\lambda^{\prime}}, e_{\mu^{*}}\right), \\
K_{\lambda \alpha}=K\left(e_{\lambda^{\prime}}, \xi_{\alpha}\right), & K_{\lambda^{*} \alpha}=K\left(e_{\lambda^{*}}, \xi_{\alpha}\right),
\end{array}
$$

then we have

$$
\begin{array}{ll}
K_{\lambda \mu}=K_{\lambda^{*} \mu^{*},} & \tag{5.3}\\
K_{\lambda \mu^{*}}=K_{\lambda^{*} \mu^{\prime}} \\
K_{\alpha \beta}=0, & K_{\lambda \alpha}=K_{\lambda^{*} \alpha}=1 .
\end{array}
$$

From (5.3) we get

$$
\begin{align*}
& R_{\lambda \lambda^{\prime}}=s+\Sigma_{\mu}\left(K_{\lambda \mu}+K_{\lambda \mu^{*}}\right), \tag{5.4}\\
& R_{\lambda^{*} \lambda^{*}}=s+\Sigma_{\mu}\left(K_{\lambda^{*} \mu}+K_{\lambda^{*} \mu^{*}}\right) . \tag{5.5}
\end{align*}
$$

THEOREM 5.1. Let M be a compact framed S-manifold of dimension $2 n+s$. If the sectional curvature of M satisfies the relation

$$
\begin{equation*}
\Sigma_{\mu}\left(K_{\lambda \mu}+K_{\lambda \mu^{*}}\right)>-3 s, \tag{5.6}
\end{equation*}
$$

then $b_{1}(M)=0$.
PROOF. For any vector $X=\left(a_{\lambda^{\prime}}, b_{\lambda^{\prime}}, 0\right)$ with respect to the f-basis $\left\{e_{\lambda^{\prime}}, e_{\lambda^{*}}, \xi_{\alpha}\right\}$, we have

$$
g(X, X)=\Sigma_{\lambda}\left(a_{\lambda}^{2}+b_{\lambda}^{2}\right)
$$

and

$$
R_{1}(X, X)=\Sigma R_{\lambda \lambda}\left(a_{\lambda}\right)^{2}+\Sigma R_{\lambda^{*} \lambda^{*}}\left(b_{\lambda}\right)^{2},
$$

substituting (5.4) and (5.5) into the last equation, we get

$$
R_{1}(X, X)+2 s g(X, X)=\left(\Sigma_{\mu}\left(K_{\lambda \mu}+K_{\lambda \mu^{*}}\right)+s\right) g(X, X)+2 s g(X, X) .
$$

By hypothesis we see that

$$
R_{1}(X, X)+2 \operatorname{sg}(X, X)>0
$$

Now, suppose that w be a non-zero harmonic 1-form, then the vector X associated to w is orthogonal to ξ_{α}. This contradictory to Theorem 4.3. Hence w has to be zero and $b_{1}(M)=0$.

6. Harmonic 1-forms and \boldsymbol{f}-holomorphic pinching

In a framed S-manifold, analogously to the Sasakian case [8], we define certain pinching for f-sectional curvature and discuss the relations of harmonic 1 -forms and such a pinching. To get the relations we consider a D-homothetic deformation:

$$
\begin{equation*}
{ }^{*} g=a g+\left(a^{2}-a\right) \Sigma \eta_{\alpha} \otimes \eta_{\alpha} . \tag{6.1}
\end{equation*}
$$

LEMMA 6.1. For a D-homothetic deformation (6.1) on a framed S-manifold M, we have

$$
\begin{gather*}
{ }^{*} K_{\lambda \mu}=a^{-1} K_{\lambda \mu^{\prime}} \tag{6.2}\\
{ }^{*} K_{\lambda \mu^{*}}=a^{-1}\left[K_{\lambda \mu^{*}}+3 s(1-a) \delta_{\lambda \mu}\right] \tag{6.3}\\
\left(\text { especially },{ }^{*} K_{\lambda \lambda^{*}}+3 s=a^{-1}\left(K_{\lambda \lambda^{*}}+3 s\right)\right)
\end{gather*}
$$

PROOF. For an f-basis $\left(e_{\lambda}, e_{\lambda^{*}}, \xi_{\alpha}\right)$, the related ${ }^{*} f$-basis is given by

$$
{ }^{*} e_{\lambda}=a^{-1 / 2} e_{\lambda^{\prime}},{ }^{*} e_{\lambda^{*}}=a^{-1 / 2} e_{\lambda^{*}},{ }^{*} \xi_{\alpha}=a^{-1} \xi_{\alpha} .
$$

Let X and Y be orthonormal vectors with respect to g in D, where D is the distribution defined by $\eta_{\alpha}=0$, From (4.1) and (4.3) we have

$$
\begin{aligned}
{ }^{*} K(X, Y) & ={ }^{*} g\left({ }^{*} R(X, Y) X, Y\right) /^{*} g(X, X)^{*} g(Y, Y) \\
& =a^{-1}\left[K(X, Y)+3 s(1-a) F(X, Y)^{2}\right]
\end{aligned}
$$

Since $F\left(e_{\lambda}, e_{\mu}\right)=0$ and $F\left(e_{\lambda^{\prime}}, e_{\mu^{*}}\right)=-\delta_{\lambda \mu^{\prime}}$, we have (6.2) and (6.3).
Now assumme that H and L defined by

$$
\begin{aligned}
& H=\sup \{K(X, f X)\} ; X \in D, \\
& L=\inf \{K(X, f X)\} ; X \in D,
\end{aligned}
$$

exist and that $H+3 s>0$, then t defined by
(6.4)

$$
t=(L+3 s) /(H+3 s)
$$

is invariant for the D-homothetic deformation (6.1). In this case we say that M is f-holomorphically pinched.

LEMMA 6.2. If a framed S-manifold M is f-holomorphically pinched, we can find a Rienannianetric ${ }^{*} g$ by D-homothetic deformation so that ${ }^{*} H=s$ and ${ }^{*} L=$ $(4 t-3) s$ with respect to $\left(f,{ }^{*} g,{ }^{*} \xi_{\alpha},{ }^{*} \eta_{\alpha}\right)$.

PROOF. If we put $a=(H \div 3 s) / 4 s$, then from (6.3) we have ${ }^{*} H=s$.
LEMMA. 6.3. (D.E. Blair [1]) Let M be a framed S-manifold, then for any vectors $X, Y \in D$, we have

$$
\begin{align*}
g(R(X, Y) X, Y) & =\frac{1}{32}[3 D(X+f Y)+3 D(X-f Y)-D(X+Y) \tag{6.5}\\
& -D(X-Y)-4 D(X)-4 D(Y)-24 s P(X, Y)]
\end{align*}
$$

where $D(X)=g(R(X, f X) X, f X)$ and

$$
P(X, Y)=g(X, Y)^{2}-g(X, X) g(Y, Y)+F(X, Y)^{2} .
$$

Especially if X and Y are orthonormal, denoting $H(X)=K(X, f X)$ and $g(X, f Y)$ $=\cos \theta$, we have
(6.6) $K(X, Y)=\frac{1}{8}\left[3(1+\cos \theta)^{2} H(X+f Y)+3(1-\cos \theta)^{2} H(X-f Y)\right.$

$$
\left.-H(X+Y)-H(X-Y)-H(X)-H(Y)+6 s \sin ^{2} \theta\right]
$$

LEMMA 6.4. In a framed S-manifold M, for an orthonormal pair $X, Y \in D$, we have
(6.7)

$$
\begin{aligned}
K(X, Y) & +\sin ^{2} \theta K(X, f X)=\frac{1}{4}\left[(1+\cos \theta)^{2} H(X+f Y)\right. \\
& +(1-\cos \theta)^{2} H(X-f Y)+H(X+Y) \\
& \left.+H(X-Y)-H(X)-H(Y)+6 s \sin ^{2} \theta\right]
\end{aligned}
$$

PROOF. Replacing Y by $f Y$ in (6.5) and adding the resulting equation to (6.6), we get (6.7).
Finally we prove

THEOREM 6.5. Let M be a framed S-manifold which is f-holomorphically pinched with $t>\frac{1}{2}\left(1-\frac{1}{n}\right)$. Then $b_{1}(M)=0$.

PROOF. We put $X=e_{\lambda}$ and $Y=e_{\mu}$ in (6.7), then(6,7) is written by

$$
\begin{aligned}
K_{\lambda \mu}+K_{\lambda \mu^{*}}= & \frac{1}{4}\left[H\left(e_{\lambda}+e_{\mu_{*}}\right)+H\left(e_{\lambda}-e_{\mu^{*}}\right)+H\left(e_{\lambda}+e_{\mu}\right)\right. \\
& \left.+H\left(e_{\lambda}-e_{\mu}\right)-H\left(e_{\lambda}\right)-H\left(e_{\mu}\right)+6 s\right]
\end{aligned}
$$

By a D-homothetic deformation (6.1), the last equation is transformed into

$$
\begin{aligned}
a\left({ }^{*} K_{\lambda \mu}+{ }^{*} K_{\lambda \mu^{*}}\right) & =\frac{a}{4}\left[{ }^{*} H\left(e_{\lambda}+e_{\mu^{*}}\right)+{ }^{*} H\left(e_{\lambda}-e_{\mu^{*}}\right)+{ }^{*} H\left(e_{\lambda}+e_{\mu}\right) .\right. \\
& \left.+^{*} H\left(e-e_{\mu}\right)-{ }^{*} H\left(e_{\lambda}\right)-{ }^{*} H\left(e_{\mu}\right)+6 s\right],
\end{aligned}
$$

from which and lemma 6.2 we have

$$
\begin{align*}
& 4 s t-2 s \leq{ }^{*} K_{\lambda \mu}+* K_{\lambda \mu^{*}} \leq 4 s-2 s t \\
& \Sigma_{\mu}\left({ }^{*} K_{\lambda \mu}+{ }^{*} K_{\lambda \mu^{*}}\right)=\Sigma_{\lambda \neq \mu^{\prime}}\left({ }^{*} K_{\lambda \mu}+{ }^{*} K_{\lambda \mu^{*}}\right)+{ }^{*} K_{\lambda \lambda^{*}} \tag{6.8}\\
& \geq(4 n t-2 n-1) s
\end{align*}
$$

Therefore, by Theorem 4.3 we have $t>(n-1) / 2 n$ for $s>0$.

Busan National University
Busan, Korea

REFERENCES

[1] D.E. Blair, Geometry of manifolds with structural group $u(n) \times o(s)$, J. Differential Geometry 4(1970) 155-167.
[2] D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1(1967) 347-354.
[3] S. I. Goldberg, Framed manifolds, Differential geometry, in honor of K. Yano, Tokyo, 1972, 121-132.
[4] S.I. Goldberg and K. Yano, Globally framed f-manifolds, Illinois J. Math. 15(1971) 456-474.
[5] S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tôhoku Math. J. 15 (1963) 121-139.
[6] S. Sasaki, Almost contact manifolds III, Tôhoku University, Lecture Notes, 1968.
[7] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J. 2 (1965) 271-284.
[8] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12(1968) 700-717.
[9] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, Princeton University Press, 1953.

