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TOPOLOGY OF FRAMED MANIFOLDS

By Yong Bai Baik

0. Introduction

D.E. Blair [1], S.I. Goldberg and K. Yano [4] have studied the framed

manifolds with f-structure. This is a generlization of almost complex manifold and
almost contact manifold. In a framed manifold, we take an interest in S-structure
the analogue of Kaehler structure in almost complex manifolds and of the Sasakian
structure in almost contact manifolds. |

In this paper we shall discuss harmonic 1-forms In compact framed S-manifold
and obtain some analogous results to compact Kaehlerian manifold and compact
Sasakian manifold. The main theorems of the paper are Theorems 3.3, 4.3, 5.1
and 6.5. In §1 we give definitions of framed manifolds. In § 2 for later use we
give preliminary formulas on framed S-manifold and framed C-manifold. In § 3 we

discuss harmonic 1-form and we shall prove Theorem 3.3. In §4 we have used
2n-homothetic deformations to get the results on first Betti number and we shall

prove Theorem 4.3. In §5 we discuss the relations of harmonic 1-forms and the
sectional curvatures and prove Theorem 5.1. In §6 we consider an f-holomophic
pinching to get the results on first Betti number and we prove Theorem 6. 5.

1. Framed manifolds

Let M be a (2n+s)-dimensional differentiable manifolds with an f-structure of
rank 2n. If there exist on M vector fields ¢ and 1-forms p, such that

(1. 1) f2= —-I—I—Z'Ea@rza,
(1.2) Ta(€)=0, 5
(1.3) fEa"—'O: ﬁaﬂfzo ’

where the indices «, 8 run over the range {1,2, -+, s} and repeated index a Is to
be summed from 1 to s, then we call the structure a framed structure and the
manifold M is called a globally framed f-manifold or a framed manifold ([1], [3].
[4] ).

The framed manifold M is called a framed metric manifold if there exists on
M a Riemannian metric g such that
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(1. 4) g X fY)=g(X.Y)—5 7.(X)n (V).

for vector fields X and ¥ on M, where we put ﬁa(}{ )y=g(€ a,X).
If the tensor field S of type (1, 2) defined by
SH=1,F1+2¢ Rdn,

vanishes identically, the framed structure is said to be normal and the manifold

M 1is called a normal framed manifold.
Further a framed metric structure which is normal and has closed fundamental

2-form F, that is,
(1.5) dFF=0, F(X,Y)=g(X,fY),
will be called a framed K-structure and M a framed K-manifold. It should be

noted that a framed K-manifold is orientable since
n AR A AR AF #0.

There are special two types of framed K-manifold {1]:

1) If there exists global linearly independent 1-forms 7,, «--, 7 such that A =+
=dn,=2F, then we call the structure a framed S-structure and the manifold M
a framed S-manifold. As example, there is Sasakian structure for s=1.

2) If there exists global 1-forms n,, -+, 7, on a framed K-manifold M such that

.dy?
1
framed C-manifold. As example, there is cosymplectic structure for s=1.

= -+ =dp =0, then we call the structure a framed C-structure and M a

2. Identities In framed S-manifold

In this section, we prepare identities in a (2#+s)-dimensional framed S-manifold

for later use.
We denote by L the operator of Lie derivative, then the following properties

are well-known [1], [3].
(2.1 L, )g=0,
(2.2) L )f=0, L(E DF=0.
From (2.1) we see that the vector fields &,, -, §_ are Killing.
Denoting covariant differentiation by V in a framed K-manifold we get

(dn ) ﬁ=Vj17ai. Thus, on a framed S-manifold we have
and in the case of a framed C-manifold

(2.9 V,72i=0 .
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Differentiating covariantly f]-. on a framed S$-manifold, by

computation we have [1]

(2.5) | Vol =2 0 a8 =il in) = 2, 5 Merlaiss ™ Tai 5
From (2.5) we have
4 4 a
(2' 6) Vv fm::zﬁ):’,a'??cxz" % v.-:zfji: _2Ssz' ’

in the case of a framed C-maniiold
Next, applying the Ricci’s identity to n,, we get

“' f
.vkvjnm' - vaknm' - Rﬁﬁ Tout

Substituting (2.3) and (2.5) into the last equation, we have

¢
(2.8) Ryii Mot =2 a8 i~ Majin) — >, p MMt Nk

Transvecting ,.gr]z to (2.8) we have

¢
(2.9) R, 7, =2n¥ n ..

‘Similarly, applying the Riccl’s identity to f ;z, we get
h A k.t ! - R
vkvjfz' _Vjkaz' :Rkﬂ J; “Rkﬁfr .

Substituting (2.5) into the last equation, we have

i !
Re‘ﬁzkjfi = Rkjiffk +S(sz'gjk +fjhgki _fkkgji —fjigkk)

22, gt kj("?é:rhﬁﬁz' — ’7m'775k)
=82 5Ch ki g Men =S w5 g =S M en S jaTl gl g
T “a, 5(f nei8i 7 e ge S killanlg; 77 jz%:h’?ﬁk)
‘T'ransvecting g.w: to the last equation we have

(2.10) —;—RsrjifS‘zR,jff+(2n—-1)sfﬁ .

165

a longthy

Since R, i and f;; are skew-symmetric with respect to 7 and 7 in (2.10), we have

'4 {
(2. 11) R.f{=—R,f; .
From (2.10) we have
(2.12) V== R, f{ +(@n—1)sf 3o,

for any vector u; .
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3. Harmonic 1-forms in a compact framed S-manifold

In this section, we consider 1-form and first Betti number in a compact framed
S-manifold.
First we prove

LEMMA 3.1. In a compact framed S-manifold, a harmonic 1-form w is orthogonal
1, Ea, thal is, S;wi=0.

PROOF. Since the vector fields & are Killing, we have dC =0 for the scalars

X

C, defined by Cazé';wi for each a, Hence C  are constant. If we define # by

(3. 1) w=3C,n, +u,
then # is a 1-form orthogonal to §,. Operating 4 to the last equation we get

du=—2C 4n, and as p_are Killing we have

(du);=—~3C (4 ),=25C, R.n ,=4nZC

by virtue of (2.1) and (2.9). Hence # is a harmonic 1-form because of (du, #)=0.

Thus we have C,=0 and obtain the lemma.

anai’

LEMMA 3.2. In a compact framed S-manifold, w=fw is a harmonic 1-form for
any harmonic 1-form w.

PROOF. Taking account of lemma 3.1 and (2.6) we get
~ 7; 1 a 1
(Aw)jzv Vﬂ(fj.wi)—}i’j (f,w,)
= (VB w4200, f (Vw0 ) 5V o, f Ry w,,
the first two terms of the right member is transformed to
) /) a .1 a,t
—2f ; w;+2sf wz-+2321;aj€ﬁ f, wi+232na,jfﬁ S, w;=0,
by birture of (1.2) and (2.6). Thus we have
~N _ pl, 0 a _
(i) ;=f; V'V jw;— R;w,)=0.
From lemmas 3.1 and 3.2 we have

THEOREM 3.3. The first Beiti number of a compact framed S-manifold is zerc

and even.

Next, we define an f-analytic form as a 1-form # satisfying
(3.2) fdu—dfu=0,

and
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(3.3) z'(fa)u———o for all £ .
Then the equation (3.2) is written explicitly as follows
(3.4) fjﬂ(vaui—vzua)—Vj(ffua)—vz.(ffua)=0
Taking account of (3.3) and (2.5), the last equation is written by
(3.5) fjavauz'—fiavjua_l_za"?ajui_ oo j=0 .

Transvecting (3.5) with gﬁ we obtain
jig .
(3.6) Jf ijzi—-O.

Then we prove

THEOREM 3.4. A necessary and sufficient condition for a 1-form u in a compact
framed S-manifold to be harmonic is that it is f-analyiic.

PROOF. For a harmonic 1-form #», we have du=0 and /(§,)=0 by virtue of
lemma 3.1. Then fu# is also a harmonic and we have df#=0. Hence # 1s an
f-analytic.

- Conversely, let # be an f-analytic, then we have (¢ a,)u=E a,izcz:O. Differenting

the above and making use of (2.4) we get
flu+ (Y )€, =0.
Again diffirentiating the last equation and using of (3.6) we have
(3.7) & V'V =0,
Next, transvecting (3.5) with fi we have
Fof oV itV =30, E 0w + (3 =0,

Operating \vA =gj iVE. to the last equation we get 4u=0, by virtue of (3.7) and
(2.5). Thus # is harmonic.

4, Harmonic 1-forms and Ricel curvature tensors

In this section, we use 2z-homothetic deformations to get results on the first
Betti numbers. First we put D by the equations n,=0 for all@, then D is a

2n-dimensional distribution. We define a 2z-homothetic deformation, or simply a

D-homothetic deformation g ﬁ—ar*g i is given by

(4.1) *gﬁ = agﬁerZ 7

r_::rjnm' ’

for the constants ¢ and & satisfying ¢>0 and a+5>0, The inverse matrix
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(*gj k) of (¥p ﬂe) is given by

(4.2) - xgt=aT g - e IS € g
If we put
7 1 ;
ij— *ij —F}k ,

we have In a framed S-manifold
i =1 ; ;
(4. 3) ij = —a bZ’a(fij—kanaj) :
Substituting (4.3) in to the
A h h n e h a
*Rj'kh_Rjkh+viIVj'k “vjwik +Wa? ij _Wasz'k ’
we have

(4. 4) * B

h -1 h Z h
Rz‘jk“‘}‘?w"‘"a bs(2fkfz.j+fjfz-k—fifjk)
—1 h h h h
ta b 2y Vi i+ 0 Vi o= oy Vi =TV S )
n _252 .-Jzz, _C.)Jzz. 5
a (03‘ ??a'} 7 Tiafi) Mok
—2,2 ok
+a b (Zéa(ﬂajzﬂﬁg_7?3;'27?5;)2777,@
Contracting with respect to 7 and & we get
(4.5) *Rjszjk_zg bsgjk+2€3 b(2n +- S)Znajncrk+2na b Eﬁﬂfznﬁk
where we have used (2.6). Contracting the last equation with (4.2), we have

(4.6) *R-—-a_lR—!Znsa-zb.

where R 1s the scalar curvature.

LEMMA 4.1. For a framed manifold M with structure tensors (f, g,& o Tp)r WE
pul

A7) ¥=f, *,=af,, *n,=a"'n, *g=ag+(d—a)In®n,

for positive constant a. If (f, g,§& o 77“) s a framed S-structure (C-structure, resp.),
then (C*f,*g,*¢ ,*n,) is also a framed S-structure (C-structure resp.)

PROOF. By the definition it is easy to see that (*f,*g,*¢,,*n,) is a framed

metric structure. We compute
*@¥n (X, Y€, =*dn (X, V), =C*V 1,0 (¥)—(*V¥p )(X)

= (v}{ﬁa) (Y)— (Vyﬁa) (X) —dn, (X, Y)éa

from which and *f=f, we have
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[*f, *f1 +3 *d*n (X,Y)*¢,=0.

From F*(X,Y)=aF(X,Y) we get *d*F=adF=0. Thus the structure (f¥, *g,
*€ »*n,) is a framed K-structure.

Furthermore we have
*@*y (X, Y)=adn,(X,Y)=2*F(X,Y) ,

this shows that (*f,*g,*§ ,*n,) is a framed S-structure.

LEMMA 4.2. A harmonic 1-form w with respect lo g on a framed S-manifold M
18 also a harmonic 1-form with respect to *¢o .

PROOF. Since dw=0 and Jw=0, we prove *dw=0 and *0w=0. By the definitions
of *d and *J we get

(*dw)ji?*vjwi—*viwj
— (ijz.—Wﬂz.}.wg) — (Vz-wj—Wa..w ).

ji " a

Since Wi.j is symmetric with respect to ¢ and 7, we have *dw=0.
*5w=*gij(*vjwi)
o ~1 z'j__ ~1 — 127 5f R 7 7e.
_(a g a b(d+b) E-aéa)(vng sz wa)
—a Yow.
Hence we have *dw=0.

THEOREM 4.3. On a compact framed S-manifold M, there exists no harmonic
1-form w which satisfies

(4. 8) R, (w, w)+2sg(w, w)>0

for any point of M and which has ai least one point where inqualily holds.
Especially, if R,+2s g is positive definite, then the first Beti number is zero,
that is, b,(M)=0.

PROOF. Assume that there exists a harmonic 1-form w satisfying (4.8). As M

is compact g(w,w) is bounded and there exists a positive number & such that
Rl(w, w)+2sg(w,w) >e>0

holds everywhere over M.
On the other hand, by lemma 3.1, (4.2) and (4.5) we have

] ; —1 7
*R ﬁ*w; *w =a *Rﬁ.w} 0w

-1 o, ;0
=a (R;—2a 'bs gﬁ)w w .
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If we choose the constant ¢ so small that

2asg(w, w) <&,
then we have

*Rl(*w! *w) > Or
the last inquality contradicts to the Theorem of Yano and Bochner[9] .

5. Harmonic 1-forms and curvature tensors

In a framed manifold M, we define an f-basis at a point of M as the set of
orthogonal frame f{e,, e,*,¢, /1 (A*=n+4, a’=2r+a) such tha
(5- 1) 62*=f€1, ea,,=fa

Then the components of the metric tensor g and the fundamental 2-form F with
respect to an f-basis are given by

v, A
5, 0 0 [0 -0, 0)
(5.2) g=| 0 9,0 F={d" 0 0

respectively. Then we have f,,.=—1, fx;=1 and other components are all zero.
In a framed S-manifold, from (2.11), for an eigenvector X of R, fX i1s also

an eigenvector. Thus we have an f-basis for which only R,;, R,.;x and R, =2n

may be non-vanishing components of R,. Hence the matrix (R, }.) is a diagonal.

By K(X,Y) we mean the sectional curvature for the 2-plane determined by
X and Y, and we put

K,=K(eye), K =Keew,
KM:K(elr éa-)r KR*{E-:K(eZ_*’ éa),

then we have

(5.3) KZ#=K1*#*, KZ#*=KZ*F,
Kaﬁzo’ Klt:r:Kl*a:l'
From (5.3) we get
(5.5) Ryxyn= s—i—E#(KZ*#—l—Kz*ﬂ*).

THEOREM 5.1. Let M be a compact framed S-manifold of dimension 2n-+s. If
the sectional curvature of M saiisfies the relation

| (5-6) E#(K1ﬂ+K2#*)>_33 ’
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then b,(M)=0.

PROOF. For any vector X=(a,, b,,0) with respect to the f-basis {e;, e, ,§,}
we have

g(X, X)=5,(a;+b)
and
_ R (X, X)=5 R;(a)2+ 3R, (5,)° ,
- substituting (5.4) and (5.5) into the last equation, we get
R (X, X)+25g(X,X)=(2 (K;,+K; ) +5)g(X, X)+2sg(X, X).

- By hypothesis we see that
R (X, X)+2sg(X, X)>0 .

Now, suppose that w be a non-zero harmonic 1-form, then the vector X associated
to w is orthogonal to &,. This contradictory to Theorem 4.3. Hence w has to be
zero and b,(M)=0.

6. Harmonic 1-forms and f-holomorphice pinching

In a framed S-manifold, analogously to the Sasakian case [8], we define certain
pinching for f-sectional curvature and discuss the relations of harmonic 1-forms
and such a pinching. To get the relations we consider a D-homothetic deformation:

2
(6.1) *g=ag+(a —a)dn S, .

LEMMA 6.1. For a D-homothetic deformation (6.1) on a framed S-manifold M,
we have

| —1
(6.2) - YK, =a K,,
(6.3) K =0 (K +35(1=a)d, )
(especially, *Ku*+33=a_l(lfll*+ 3s))

PROOF. For an f-basis (e;, ez*,{f' .)» the related *f-basis is given by

—1

*p — * — * —
ej‘—'a e;{; 32*-——@ r el*j éa"'_cz o ®

Let X and Y be orthonormal vectors with respect to g in D, where D 1is the
distribution defined by 7,=0, From (4.1) and (4.3) we have

*K(X,Y)=*¢g(*R(X,Y)X,Y)/*g(X,X)*g(¥,Y)
=a" [K(X, V) +3s(1—a)F(X,Y)’]
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Since F(e;, eﬂ)zo and F(ez, e#*)-:—-é‘zﬂ, we have (6.2) and (6. 3).

Now assumme that H and L defined by
H=sup{K(X,fX)}; XED,
L=mi{K(X,fX)}; X&D,
exist and that H+3s>0, then ¢ defined by
(6.4) t=(L+3s)/(H+3s)
is invariant for the D-homothetic deformation (6.1). In this case we say that M

is f-holomorphically pinched.

LEMMA 6.2. If a framed S-manifold M is f-holomorphically pinched, we can
find a Riemannianetric *g by D-homothetic deformetion so that *H=s and *L=
(4¢—3)s with respect to (f,*g,”S,,*n, ).

PROOF. If we put ea=(H +3s)/4s, then from (6.3) we have *H =s.

LEMMA. 6.3. (D.E. Blair {1}) Let M be a framed S-manifold, them for any
vectors X,Y € D, we have

(6.5) g(R(X,Y )X, Y)—- BD(X+fY)4+3D(X—fY)—-D(X+Y)
— D(X —Y)—4D(X)—4D(Y)—-24sP(X,Y )],
where D(X)=g(R(X,fX)X,fX) and

P(X,Y)=g(X,Y)’~g(X, X)g(Y.Y)+F(X, V).
Especially if X and Y are orthonormal, denoting H(X)=K(X,fX) and g(X,fY )
=cos0, we have

6.6) K(X,¥Y)= é [3(1+cos 0)°H (X +fY) +3(1—cos 6) H (X ~fY)

1

_H(X+Y)—H(X~Y)-H(X)—-H(Y)+6s sin6)

LEMMA 6.4. In a framed S-manifold M, for arn orthonormal pair X,Y € D,
we have

(6.7) K(X, Y)+sm 6 K(X, fX)—- ((1+cosB) H(X+fY)

+(1—cos 9)2H(X—fY)+H(X-I—Y)
+H(X-Y)—-H(X)—=H()+6s sin’f]

PROOF. Replacing ¥ by fY in (6.5) and adding the resulting equation to (6.6),
we get (6.7).

Finally we prove
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THEOREM 6.5. Let M be a framed S-manifold which is f-holomordhically pinched

with t>—é—(l—--}z—>. Tkén bl(M)=O :

PROOF. We put X=e, and Y=e, in (6.7), then(6,7) is written by

i [H(ez+e#*)—I-H(ez—eﬂ*)—l-ff(eﬁ—e#)

+H(el—eﬂ)—H(ez) —H(e#) +68] .

KZ#—I-KM*“

By a D-homothetic deformation (6.1), the last equation is transformed into
aC*K, +7K, )= Z [*H(e;+e ) +"H(ey—~e ) +*H(e;+e,)
+*H(e—e¢ )—*H(e;)—*H(e ) +6s] ,

from which and lemma 6.2 we have
431—23_‘:{*!{2#4—*1{2#*243—231

(6' 8) E#C*KZ#—}'*KZ#*)222##(*K2#+*K2ﬂ*)+*-[{m*
>(4nt—2n—1)s |
Therefore, by Theorem 4.3 we have > (n—1)/2n for s>0.

Busan National University
Busan, Korea
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